|
@@ -122,14 +122,14 @@ N = max(N,-X_theo);
|
|
|
|
|
|
X = W.*(X_theo+N); % Data matrix X
|
|
X = W.*(X_theo+N); % Data matrix X
|
|
|
|
|
|
-%% Calibration parameters
|
|
|
|
-
|
|
|
|
-% % Common parameters
|
|
|
|
Omega_G = [ones(s_n,1),W(:,(N_Cpt+1)*(1:N_sousCpt))]; % Mask on known values in G (see eq.(14) of [1])
|
|
Omega_G = [ones(s_n,1),W(:,(N_Cpt+1)*(1:N_sousCpt))]; % Mask on known values in G (see eq.(14) of [1])
|
|
Omega_F = zeros(N_sousCpt+1,N_sousCpt*(N_Cpt+1));
|
|
Omega_F = zeros(N_sousCpt+1,N_sousCpt*(N_Cpt+1));
|
|
Omega_F(:,(N_Cpt+1)*(1:N_sousCpt)) = 1; % Mask on known values in F (see eq.(15) of [1])
|
|
Omega_F(:,(N_Cpt+1)*(1:N_sousCpt)) = 1; % Mask on known values in F (see eq.(15) of [1])
|
|
Phi_G = [ones(s_n,1),X(:,(N_Cpt+1)*(1:N_sousCpt))]; % Known values in G (see eq.(14) of [1])
|
|
Phi_G = [ones(s_n,1),X(:,(N_Cpt+1)*(1:N_sousCpt))]; % Known values in G (see eq.(14) of [1])
|
|
Phi_F = F_theo .* Omega_F; % Known values in F (see eq.(15) of [1])
|
|
Phi_F = F_theo .* Omega_F; % Known values in F (see eq.(15) of [1])
|
|
|
|
+
|
|
|
|
+%% Initialization
|
|
|
|
+
|
|
Ginit = ones(s_n,1);
|
|
Ginit = ones(s_n,1);
|
|
for sensor = 1:N_sousCpt
|
|
for sensor = 1:N_sousCpt
|
|
g = zeros(s_n,1);
|
|
g = zeros(s_n,1);
|
|
@@ -169,7 +169,7 @@ for sen = 1:N_sousCpt
|
|
% finit_nosen = rand(1,N_Cpt).*C/(sqrt(N_sousCpt)*maxPhen_nosen);
|
|
% finit_nosen = rand(1,N_Cpt).*C/(sqrt(N_sousCpt)*maxPhen_nosen);
|
|
% other_finit = cat(2, finit_nosen, 0);
|
|
% other_finit = cat(2, finit_nosen, 0);
|
|
% Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = other_finit;
|
|
% Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = other_finit;
|
|
- Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = zeros(1,N_Cpt+1);
|
|
|
|
|
|
+ Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = zeros(1,N_Cpt+1); % initialization of other dependencies at zero
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|