|
@@ -0,0 +1,141 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+import numpy as np
|
|
|
+from scipy.stats import multivariate_normal
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+
|
|
|
+class dataCreator:
|
|
|
+ '''
|
|
|
+ Generates a pollution scenario
|
|
|
+ '''
|
|
|
+
|
|
|
+ def __init__(self, sceneWidth, sceneLength, numSensor, numRef, rdvR, mvR, phenLowerBound, phenUpperBound, Mu_beta,
|
|
|
+ Mu_alpha, Bound_beta, Bound_alpha):
|
|
|
+ self.sceneWidth = sceneWidth # Width of the scene
|
|
|
+ self.sceneLength = sceneLength # Length of the scene
|
|
|
+ self.numArea = self.sceneWidth * self.sceneLength # Number of sampled area in the scene
|
|
|
+ self.numSensor = numSensor # Number of sensors in the scene
|
|
|
+ self.numRef = numRef # Number of references in the scene
|
|
|
+ self.rdvR = rdvR # Rendez-vous rate : number of rendez-vous/number of sensors
|
|
|
+ self.mvR = mvR # missing value rate
|
|
|
+ self.phenLowerBound = phenLowerBound # lower bound on the phenomena (air pollution concentrations) standard deviation (normal distribution)
|
|
|
+ self.phenUpperBound = phenUpperBound # upper bound "
|
|
|
+ self.Mu_beta = Mu_beta # Mean sensors offset
|
|
|
+ self.Mu_alpha = Mu_alpha # Mean sensors gain
|
|
|
+ self.Bound_beta = Bound_beta # Offset boundaries
|
|
|
+ self.Bound_alpha = Bound_alpha # Gain boundaries
|
|
|
+ self.numRdv = round(self.numSensor * self.rdvR) # Number of sensors having a rendez-vous in the scene
|
|
|
+ # self.numAreaVisited = self.numSensor+self.numRef-self.numRdv # Number of not empty areas
|
|
|
+
|
|
|
+ def create_scene(self, randSeed):
|
|
|
+ np.random.seed(randSeed) # Random seed
|
|
|
+ # Creation of the map
|
|
|
+ self.S = np.zeros(shape=self.numArea)
|
|
|
+ x = np.linspace(-1, 1, num=self.sceneLength)
|
|
|
+ y = np.linspace(-1, 1, num=self.sceneWidth)
|
|
|
+ # Create meshgrid
|
|
|
+ xx, yy = np.meshgrid(x, y)
|
|
|
+ coord = np.vstack((xx.ravel(), yy.ravel())).T
|
|
|
+ # number of pollution pics fixed to 10
|
|
|
+
|
|
|
+ # MUTED FOR DEBUGGIN
|
|
|
+ # for _ in range(10):
|
|
|
+ # mean = np.squeeze(np.array([2 * (np.random.rand(1) - 0.5), 2 * (np.random.rand(1) - 0.5)]))
|
|
|
+ # cxy = 0
|
|
|
+ # cov = np.squeeze(np.array([[self.phenLowerBound + (self.phenUpperBound - self.phenLowerBound) * np.absolute(
|
|
|
+ # np.random.randn(1) + 0.5), cxy],
|
|
|
+ # [cxy,
|
|
|
+ # self.phenLowerBound + (self.phenUpperBound - self.phenLowerBound) * np.absolute(
|
|
|
+ # np.random.randn(1) + 0.5)]]))
|
|
|
+ # z = multivariate_normal.pdf(coord, mean=mean, cov=cov)
|
|
|
+ # self.S = self.S + z
|
|
|
+
|
|
|
+ # REMOVE THIS BLOCK AFTER DEBUG
|
|
|
+ z = multivariate_normal.pdf(coord, mean=[0, 0], cov=[[1, 0], [0, 1]])
|
|
|
+ z = z - np.min(z)
|
|
|
+ z = 0.5 * (z / np.max(z)) + 1e-5
|
|
|
+ self.S = z
|
|
|
+
|
|
|
+ # Random locations for the mobile sensors and the references
|
|
|
+ posRef = np.random.permutation(self.numArea)[0:self.numRef] # Selection of the references
|
|
|
+ idxSenRdv = np.random.permutation(self.numSensor)[
|
|
|
+ 0:self.numRdv] # Selection of the sensors having a rendez-vous
|
|
|
+ idxRefRdv = np.random.randint(self.numRef,
|
|
|
+ size=self.numRdv) # Selection of the references corresponding to idxSenRdv
|
|
|
+
|
|
|
+ # idxSen = np.arange(self.numSensor)
|
|
|
+ # idxSen = np.delete(idxSen,idxSenRdv) # Still available sensors
|
|
|
+ # freePos = np.arange(self.numArea)
|
|
|
+ # freePos = np.delete(freePos,posRef) # Still available positions
|
|
|
+ # posSen = np.random.choice(freePos,size=(self.numSensor-self.numRdv)) # Selection of the positions
|
|
|
+ # self.posAll = np.unique(np.concatenate((posRef,posSen))) # All unique positions of sensors and references
|
|
|
+ # self.posEmpty = np.arange(self.numArea)
|
|
|
+ # self.posEmpty = np.delete(self.posEmpty,self.posAll)
|
|
|
+
|
|
|
+ # Computation of W,G,F and X
|
|
|
+ self.W = np.zeros(shape=[self.numArea, self.numSensor + 1])
|
|
|
+
|
|
|
+ # The references
|
|
|
+ self.W[posRef, -1] = 1
|
|
|
+
|
|
|
+ # The sensors having a rendez-vous
|
|
|
+ self.W[posRef[idxRefRdv], idxSenRdv] = 1 # np.put(self.W,(self.numSensor+1)*posRef[idxRefRdv]+idxSenRdv,1)
|
|
|
+
|
|
|
+ # The other sensors
|
|
|
+ Ndata = round((1 - self.mvR) * self.numSensor * (self.numArea - self.numRef))
|
|
|
+ posSen = np.delete(np.arange(self.numArea), posRef)
|
|
|
+ xx, yy = np.meshgrid(posSen, np.arange(self.numSensor))
|
|
|
+ idx_mesh_sensor = np.random.permutation((self.numArea - self.numRef) * self.numSensor)[0:Ndata]
|
|
|
+ self.W[xx.flat[idx_mesh_sensor], yy.flat[idx_mesh_sensor]] = 1
|
|
|
+
|
|
|
+ # The areas that are not measured
|
|
|
+ self.nW = 1 - self.W
|
|
|
+
|
|
|
+ self.G = np.ones([self.numArea, 2]) # The last column of G is only composed of ones
|
|
|
+ self.G[:, 0] = self.S.flat # The first column of G is composed of the true concentration for each area
|
|
|
+
|
|
|
+ self.F = np.squeeze([np.maximum(self.Bound_alpha[0], np.minimum(self.Bound_alpha[1],
|
|
|
+ self.Mu_alpha + 0.5 * np.random.randn(1,
|
|
|
+ self.numSensor + 1))),
|
|
|
+ np.maximum(self.Bound_beta[0], np.minimum(self.Bound_beta[1],
|
|
|
+ self.Mu_beta + 0.5 * np.random.randn(1,
|
|
|
+ self.numSensor + 1)))])
|
|
|
+ self.F[:, -1] = [1, 0]
|
|
|
+
|
|
|
+ self.Xtheo = np.dot(self.G, self.F)
|
|
|
+ self.X = np.multiply(self.Xtheo, self.W)
|
|
|
+
|
|
|
+ # Computation of omega and phi
|
|
|
+ self.Omega_G = np.vstack((self.W[:, -1], np.ones(shape=self.numArea))).T
|
|
|
+ self.Omega_F = np.hstack((np.zeros(shape=(2, self.numSensor)), np.ones(shape=(2, 1))))
|
|
|
+ self.Phi_G = np.vstack((self.X[:, -1], np.ones(shape=self.numArea))).T
|
|
|
+ self.Phi_F = np.zeros(shape=(2, self.numSensor + 1))
|
|
|
+ self.Phi_F[0, -1] = 1
|
|
|
+
|
|
|
+ # Faster access to the fixed values, done to avoid time consuming Hadamard product
|
|
|
+ self.idxOG = np.argwhere(self.Omega_G.flat)
|
|
|
+ self.sparsePhi_G = self.Phi_G.flat[self.idxOG]
|
|
|
+ self.idxOF = np.argwhere(self.Omega_F.flat)
|
|
|
+ self.sparsePhi_F = self.Phi_F.flat[self.idxOF]
|
|
|
+
|
|
|
+ # Initial F and G
|
|
|
+ self.Finit = np.squeeze([np.maximum(self.Bound_alpha[0], np.minimum(self.Bound_alpha[1],
|
|
|
+ self.Mu_alpha + 0.5 * np.random.randn(1,
|
|
|
+ self.numSensor + 1))),
|
|
|
+ np.maximum(self.Bound_beta[0], np.minimum(self.Bound_beta[1],
|
|
|
+ self.Mu_beta + 0.5 * np.random.randn(1,
|
|
|
+ self.numSensor + 1)))])
|
|
|
+ self.Finit[:, -1] = [1, 0]
|
|
|
+ self.Ginit = np.absolute(np.mean(self.Phi_G[posRef, 0]) + np.random.randn(self.numArea, 2))
|
|
|
+ np.put(self.Ginit, self.idxOG, self.sparsePhi_G)
|
|
|
+
|
|
|
+ def show_scene(self):
|
|
|
+ plt.imshow(self.S.reshape((self.sceneWidth, self.sceneLength)))
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ # def show_measured_scene(self):
|
|
|
+ # obs = np.zeros(shape=(self.sceneWidth,self.sceneLength))
|
|
|
+ # np.put(obs,self.posAll,1)
|
|
|
+ # plt.imshow(np.multiply(obs,self.S.reshape((self.sceneWidth,self.sceneLength))))
|
|
|
+ # plt.show()
|