function [X, X_theo, W, F_theo, Omega_G, Omega_F, Phi_G, Phi_F, Ginit, Finit] = data_gen(config, run) rng(run+1306) % Random seed s_width = config.sceneWidth; s_length = config.sceneLength; N_Ref = config.numRef; N_Cpt = config.numSensor; N_sousCpt = config.numSubSensor; Bound_phen = config.Bound_phen; Mu_beta = config.Mu_beta; Mu_alpha = config.Mu_alpha; Bound_beta = config.Bound_beta; Bound_alpha = config.Bound_alpha; gamma = config.gamma; MV = config.mvR; RV = config.rdvR; var_n = config.var_n; %% Scene simulation n_pic = 15; s_n = s_width*s_length; % Total number of areas in the scene [xx,yy] = meshgrid((-1:2/(s_width-1):1),(-1:2/(s_length-1):1)); xxyy = cat(2,xx(:),yy(:)); G_theo = ones(s_n,1); for sensor = 1:N_sousCpt g = zeros(s_n,1); for pic = 1:n_pic mu = 2*(rand(1,2)-0.5); sig = diag([ Bound_phen((sensor-1)*2+1) + (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))*abs(randn()+0.5) , ... Bound_phen((sensor-1)*2+1) + (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))*abs(randn()+0.5) ]); g = g + mvnpdf(xxyy,mu,sig); end g = (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))/(max(g)-min(g))*(g-min(g)) + Bound_phen((sensor-1)*2+1); % .5*(g/max(g))+1e-5 G_theo = cat(2, G_theo, g); end %% Sensors simulation F_theo = zeros(N_sousCpt+1, N_sousCpt*(N_Cpt+1)); for sensor = 1:N_sousCpt F_theo(1,(sensor-1)*(N_Cpt+1)+1:sensor*(N_Cpt+1)) = ... cat(2, max(Bound_beta((sensor-1)*2+1), min(Bound_beta((sensor-1)*2+2), ... Mu_beta(sensor)+(Bound_beta((sensor-1)*2+2)-Bound_beta((sensor-1)*2+1))*0.55*randn(1,N_Cpt))), 0); end for sen = 1:N_sousCpt f_theo = cat(2, max(Bound_alpha((sen-1)*2+1),... min( Bound_alpha((sen-1)*2+2), ... Mu_alpha(sen)+(Bound_alpha((sen-1)*2+2)-Bound_alpha((sen-1)*2+1))*0.25*randn(1,N_Cpt))), 1); F_theo(sen+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = f_theo; C = (1-gamma)/gamma*(F_theo(1,(sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)-1)+Bound_phen((sen-1)*2+1)*f_theo(1:end-1)); list_nosen = 1:N_sousCpt; list_nosen(sen) = []; maxPhen_nosen = norm(Bound_phen(2*list_nosen)); for sor = list_nosen f_theo_nosen = rand(1,N_Cpt).*C/(sqrt(N_sousCpt)*maxPhen_nosen); other_f_theo = cat(2, f_theo_nosen, 0); F_theo(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = other_f_theo; end end % F_theo = []; % % for sensor = 1:N_sousCpt % F_theo = cat(2, F_theo, cat(2, max(Bound_beta(1), min(Bound_beta(2), Mu_beta+.5*randn(1,N_Cpt))), 0)); % end % % % for sen = 1:N_sousCpt % f_theo = []; % for sor = 1:N_sousCpt % if sen==sor % f_theo = cat(2, f_theo, cat(2, max(Bound_alpha(1), min(Bound_alpha(2), Mu_alpha+.5*randn(1,N_Cpt))), sen==sor)); % else % f_theo = cat(2, f_theo, cat(2, 0*max(Bound_alpha(1), min(Bound_alpha(2), Mu_alpha+.5*randn(1,N_Cpt))), sen==sor)); % end % end % F_theo = cat(1, F_theo, f_theo); % end %% Data simulation X_theo = G_theo*F_theo; % Theoretical matrix X (see eq.(2) of [1]) W = zeros(s_n,N_Cpt+1); idx_Ref = randperm(s_n); idx_Ref = idx_Ref(1:N_Ref); % Reference measurement locations W(idx_Ref,end) = 1; N_RV = round(N_Cpt*RV); % Nb. of sensors having a RendezVous idx_CptRV = randperm(N_Cpt); idx_CptRV = idx_CptRV(1:N_RV); % Selection of sensors having a RendezVous idx_RefRV = randi(N_Ref,1,N_Cpt); idx_RefRV = idx_Ref(idx_RefRV(1:N_RV)); % Selection of the references for each RendezVous for i = 1 : N_RV W(idx_RefRV(i),idx_CptRV(i)) = 1; end N_data = round((1-MV)*(N_Cpt)*(s_n-N_Ref)); % Nb. of measurements in data matrix X xCpt = 1 : s_n; xCpt(idx_Ref) = []; % Reference free locations [xx,yy] = meshgrid(xCpt,1:N_Cpt); % Possibly sensed locations idx_data = randperm((s_n-N_Ref)*N_Cpt); for i = 1 : N_data W(xx(idx_data(i)),yy(idx_data(i))) = 1; % Sensor measurement placement end W = repmat(W, 1, N_sousCpt); N = var_n*randn(s_n,N_sousCpt*(N_Cpt+1)); % Noise simulation N(:,(N_Cpt+1)*(1:N_sousCpt)) = 0; N = max(N,-X_theo); X = W.*(X_theo+N); % Data matrix X Omega_G = [ones(s_n,1),W(:,(N_Cpt+1)*(1:N_sousCpt))]; % Mask on known values in G (see eq.(14) of [1]) Omega_F = zeros(N_sousCpt+1,N_sousCpt*(N_Cpt+1)); Omega_F(:,(N_Cpt+1)*(1:N_sousCpt)) = 1; % Mask on known values in F (see eq.(15) of [1]) Phi_G = [ones(s_n,1),X(:,(N_Cpt+1)*(1:N_sousCpt))]; % Known values in G (see eq.(14) of [1]) Phi_F = F_theo .* Omega_F; % Known values in F (see eq.(15) of [1]) %% Initialization Ginit = ones(s_n,1); for sensor = 1:N_sousCpt g = zeros(s_n,1); for pic = 1:n_pic mu = 2*(rand(1,2)-0.5); sig = diag([ Bound_phen((sensor-1)*2+1) + (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))*abs(randn()+0.5) , ... Bound_phen((sensor-1)*2+1) + (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))*abs(randn()+0.5) ]); g = g + mvnpdf(xxyy,mu,sig); end g = (Bound_phen((sensor-1)*2+2) - Bound_phen((sensor-1)*2+1))/(max(g)-min(g))*(g-min(g)) + Bound_phen((sensor-1)*2+1); % .5*(g/max(g))+1e-5 Ginit = cat(2, Ginit, g); end Ginit = (1-Omega_G).*Ginit+Phi_G; % Ginit = G_theo; Finit = zeros(N_sousCpt+1, N_sousCpt*(N_Cpt+1)); for sensor = 1:N_sousCpt Finit(1,(sensor-1)*(N_Cpt+1)+1:sensor*(N_Cpt+1)) = ... cat(2, max(Bound_beta((sensor-1)*2+1), min(Bound_beta((sensor-1)*2+2), ... Mu_beta(sensor)+(Bound_beta((sensor-1)*2+2)-Bound_beta((sensor-1)*2+1))*0.25*randn(1,N_Cpt))), 0); end for sen = 1:N_sousCpt finit = cat(2, max(Bound_alpha((sen-1)*2+1),... min( Bound_alpha((sen-1)*2+2), ... Mu_alpha(sen)+(Bound_alpha((sen-1)*2+2)-Bound_alpha((sen-1)*2+1))*0.25*randn(1,N_Cpt))), 1); Finit(sen+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = finit; % C = (1-gamma)/gamma*(Finit(1,(sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)-1)+Bound_phen((sen-1)*2+1)*finit(1:end-1)); % list_nosen = 1:N_sousCpt; % list_nosen(sen) = []; % maxPhen_nosen = norm(Bound_phen(2*list_nosen)); for sor = 1:N_sousCpt if sen~=sor % finit_nosen = rand(1,N_Cpt).*C/(sqrt(N_sousCpt)*maxPhen_nosen); % other_finit = cat(2, finit_nosen, 0); % Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = other_finit; Finit(sor+1, (sen-1)*(N_Cpt+1)+1:sen*(N_Cpt+1)) = zeros(1,N_Cpt+1); % initialization of other dependencies at zero end end end % Finit = F_theo; end