function [ T , RMSE ] = remnenmf( W , X , G , F , Omega_G, Omega_F, Phi_G, Phi_F , InnerMinIter , InnerMaxIter , Tmax , v, F_theo, delta_measure) r = 0; X0 = X; Omega_G = (Omega_G == 1); % Logical mask is faster than indexing in matlab. Omega_F = (Omega_F == 1); % Logical mask is faster than indexing in matlab. % nOmega_G = ~Omega_G; % Logical mask is faster than indexing in matlab. % nOmega_F = ~Omega_F; % Logical mask is faster than indexing in matlab. [~, num_sensor] = size(F); num_sensor = num_sensor-1; em_iter_max = round(Tmax / delta_measure) ; T = nan(1,em_iter_max); RMSE = nan(2,em_iter_max); X = G*F+W.*(X0-G*F); [L,R]=RSI_compression(X,r); % Compress left and right X_L = L * X; X_R = X * R; G_L = L * G; F_R = F * R; GG = G_L' * G_L; GX = G_L' * X_L; GradF = GG * F - GX; FF = F_R * F_R'; XF = X_R * F_R'; GradG = G * FF - XF; d = Grad_P([GradG',GradF],[G',F]); StoppingCritF = 1.e-3*d; StoppingCritG = StoppingCritF; tic i = 1; niter = 0; RMSE(:,i) = vecnorm(F(:,1:end-1)- F_theo(:,1:end-1),2,2)/sqrt(num_sensor); T(i) = toc; while toc= delta_measure i = i+1; if i > em_iter_max break end T(i) = toc; RMSE(:,i) = vecnorm(F(:,1:end-1) - F_theo(:,1:end-1),2,2)/sqrt(num_sensor); end end niter = niter + 1; end niter end function [ L,R ] = RSI_compression(X,r) % Tepper, M., & Sapiro, G. (2016). Compressed nonnegative % matrix factorization is fast and accurate. IEEE Transactions % on Signal Processing, 64(9), 2269-2283. % see: https://arxiv.org/pdf/1505.04650 % The corresponding code is originally created by the authors % Then, it is modified by F. Yahaya. % Date: 13/04/2018 % compressionLevel=10; [m,n]=size(X); l = min(n, max(compressionLevel, r + 10)); OmegaL = randn(n,l); Y = X * OmegaL; for i=1:4 [Y,~]=qr(Y,0); S=X'*Y; [Z,~]=qr(S,0); Y=X* Z; end [L,~]=qr(Y,0); L=L'; OmegaR = randn(l, m); Y = OmegaR * X; for i=1:4 [Y,~]=qr(Y',0); S=X*Y; [Z,~]=qr(S,0); Y=Z'*X; end Y=Y'; [R,~] = qr(Y,0); end