function [X, X_theo, W, F_theo, Omega_G, Omega_F, Phi_G, Phi_F, Ginit, Finit] = data_gen(s_width, s_length, run, N_Ref, N_Cpt, Mu_beta, Mu_alpha, Bound_beta, Bound_alpha, MV, RV, var_n) rng(run+1306) % Random seed %% Scene simulation phenLowerBound = 0.05; phenUpperBound = 0.15; n_pic = 15; s_n = s_width*s_length; % Total number of areas in the scene [xx,yy] = meshgrid((-1:2/(s_width-1):1),(-1:2/(s_length-1):1)); xxyy = cat(2,xx(:),yy(:)); g = zeros(1,s_n); for pic = 1:n_pic mu = 2*(rand(1,2)-0.5); sig = diag([ phenLowerBound + (phenUpperBound - phenLowerBound)*abs(randn()+0.5) , phenLowerBound + (phenUpperBound - phenLowerBound)*abs(randn()+0.5) ]); g = g + mvnpdf(xxyy,mu,sig); end g = g-min(g); g = .5*(g/max(g))+1e-5; G_theo = [ones(s_n,1),g]; % Theoretical matrix G (see eq.(3) of [1]) %% Sensors simulation F_theo = [max(Bound_beta(1),min(Bound_beta(2),Mu_beta+.5*randn(1,N_Cpt)));... max(Bound_alpha(1),min(Bound_alpha(2),Mu_alpha+.5*randn(1,N_Cpt)))]; F_theo = [F_theo,[0;1]]; % Theoretical matrix F (see eq.(3) of [1]) %% Data simulation X_theo = G_theo*F_theo; % Theoretical matrix X (see eq.(2) of [1]) W = zeros(s_n,N_Cpt+1); idx_Ref = randperm(s_n); idx_Ref = idx_Ref(1:N_Ref); % Reference measurement locations W(idx_Ref,end) = 1; N_RV = round(N_Cpt*RV); % Nb. of sensors having a RendezVous idx_CptRV = randperm(N_Cpt); idx_CptRV = idx_CptRV(1:N_RV); % Selection of sensors having a RendezVous idx_RefRV = randi(N_Ref,1,N_Cpt); idx_RefRV = idx_Ref(idx_RefRV(1:N_RV)); % Selection of the references for each RendezVous for i = 1 : N_RV W(idx_RefRV(i),idx_CptRV(i)) = 1; end N_data = round((1-MV)*(N_Cpt)*(100-N_Ref)); % Nb. of measurements in data matrix X xCpt = 1 : s_n; xCpt(idx_Ref) = []; % Reference free locations [xx,yy] = meshgrid(xCpt,1:N_Cpt); % Possibly sensed locations idx_data = randperm((s_n-N_Ref)*N_Cpt); for i = 1 : N_data W(xx(idx_data(i)),yy(idx_data(i))) = 1; % Sensor measurement placement end N = var_n*randn(s_n,N_Cpt+1); % Noise simulation N(:,end) = 0; N = max(N,-X_theo); X = W.*(X_theo+N); % Data matrix X %% Calibration parameters % % Common parameters Omega_G = [ones(s_n,1),W(:,end)]; % Mask on known values in G (see eq.(14) of [1]) Omega_F = [zeros(2,N_Cpt),[1;1]]; % Mask on known values in F (see eq.(15) of [1]) Phi_G = [ones(s_n,1),X(:,end)]; % Known values in G (see eq.(14) of [1]) Phi_F = [zeros(2,N_Cpt),[0;1]]; % Known values in F (see eq.(15) of [1]) Ginit = abs(randn(s_n,2)+mean(Phi_G(idx_Ref,end))); % Initial matrix G : randn + mean of known ref values Ginit = (1-Omega_G).*Ginit+Phi_G; Finit = [max(Bound_beta(1),min(Bound_beta(2),Mu_beta+.5*randn(1,N_Cpt)));... max(Bound_alpha(1),min(Bound_alpha(2),Mu_alpha+.5*randn(1,N_Cpt)))]; Finit = [Finit,[0;1]]; % Initial matrix F Finit = (1-Omega_F).*Finit+Phi_F; end