123456789101112131415161718192021222324252627282930313233343536 |
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- def save2dat(RMSE,T,calibrationMethods,numRuns):
- k = 0
- for method in calibrationMethods:
- min_gain = np.min(RMSE[method][::2],axis=0)
- min_offset = np.min(RMSE[method][1::2],axis=0)
- max_gain = np.max(RMSE[method][::2],axis=0)
- max_offset = np.max(RMSE[method][1::2],axis=0)
- med_gain = np.median(RMSE[method][::2],axis=0)
- med_offset = np.median(RMSE[method][1::2],axis=0)
- if numRuns > 1:
- k = k+1
- plt.subplot(len(calibrationMethods),2,k)
- plt.semilogy(T[method][0],min_gain)
- plt.semilogy(T[method][0],max_gain)
- plt.semilogy(T[method][0],med_gain)
- k = k+1
- plt.subplot(len(calibrationMethods),2,k)
- plt.semilogy(T[method][0],min_offset)
- plt.semilogy(T[method][0],max_offset)
- plt.semilogy(T[method][0],med_offset)
- else:
- k = k+1
- plt.subplot(len(calibrationMethods),2,k)
- plt.semilogy(T[method][:],min_gain)
- plt.semilogy(T[method][:],max_gain)
- plt.semilogy(T[method][:],med_gain)
- k = k+1
- plt.subplot(len(calibrationMethods),2,k)
- plt.semilogy(T[method][:],min_offset)
- plt.semilogy(T[method][:],max_offset)
- plt.semilogy(T[method][:],med_offset)
- plt.show()
|