123456789101112131415161718192021222324252627282930313233343536373839 |
- function A = helsing(n)
- %
- % A = helsing(n)
- %
- % This file creates a matrix A whose entries are defined by :
- % A(i,j)= -log|z(i)-z(j)| , if i .neq. j
- % -log|r(i)|
- % where z(i) are n somehow randomly distributed points in a unit square
- % centered at the origin in the complex plane and where each r(i) is a
- % number in (0,d(i)[, d(i) being the distance between the point z(i) and
- % its nearest neighbour.
- %
- % Input :
- % n : size of the matrix A
- % Output :
- % A : square matrix of size n as described above
- %
- % 07 February 13
- %
- xi=rand(n,1)*2-1;
- yi=rand(n,1)*2-1;
- [xj,yj]=meshgrid(xi,yi);
- xj=xj'-xj;
- yj=yj'-yj;
- coef=-1;
- for i=1:max(size(xj))
- d0=0;
- for j=1:n
- temp=sqrt((xi(i)-xi(j))^2+(yi(j)-yi(i))^2);
- if (temp>0)
- A(i,j)=coef*log(temp);
- if (d0==0)
- d0=j;
- A(i,i)=-log(0.5*d0*rand());
- end
- end
- end
- end
|