README.md 831 B

Faster-than-fast NMF using random projections and Nesterov iterations

Random projections have been recently implemented in Nonnegative Matrix Factorization (NMF) to speed-up the NMF computations, with a negligible loss of performance. In this paper, we investigate the effects of such projections when the NMF technique uses the fast Nesterov gradient descent (NeNMF). We experimentally show that structured random projections significantly speed-up NeNMF for very large data matrices.

Purpose

ToWrite

Download

Reference

F. Yahaya, M. Puigt, G. Delmaire, and G. Roussel, "Faster-than-fast NMF using random projections and Nesterov iterations," in Proc. of iTWIST: international Traveling Workshop on Interactions between low-complexity data models and Sensing Techniques, Marseille, France, November 21-23, 2018.