123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- % Non-negative Matrix Factorization via Nesterov's Optimal Gradient Method.
- % NeNMF: Matlab Code for Efficient NMF Solver
- % Reference
- % N. Guan, D. Tao, Z. Luo, and B. Yuan, "NeNMF: An Optimal Gradient Method
- % for Non-negative Matrix Factorization", IEEE Transactions on Signal
- % Processing, Vol. 60, No. 6, PP. 2882-2898, Jun. 2012. (DOI:
- % 10.1109/TSP.2012.2190406)
- % Modified by:F. Yahaya
- % Date: 06/09/2018
- % Contact: farouk.yahaya@univ-littoral.fr
- % <Inputs>
- % X : Input data matrix (m x n)
- % r : Target low-rank
- %
- % MAX_ITER : Maximum number of iterations. Default is 1,000.
- % MIN_ITER : Minimum number of iterations. Default is 10.
- % TOL : Stopping tolerance. Default is 1e-5. If you want to obtain a more accurate solution, decrease TOL and increase MAX_ITER at the same time.
- % <Outputs>
- % W : Obtained basis matrix (m x r).
- % H : Obtained coefficients matrix (r x n).
- % T : CPU TIME.
- % RRE: Relative reconstruction error in each iteration
- % Tmax : CPU time in seconds.
- % Note: another file 'stop_rule.m' should be included under the same
- % directory as this code.
- function [W,H,RRE,T]=VANILLA_NeNMF(X,W, H,Tmax)
- MinIter=10;
- tol=1e-5;
- T=zeros(1,301);
- RRE=zeros(1,301);
- ITER_MAX=500; % maximum inner iteration number (Default)
- ITER_MIN=10; % minimum inner iteration number (Default)
- HVt=H*X'; HHt=H*H';
- WtV=W'*X; WtW=W'*W;
- GradW=W*HHt-HVt';
- GradH=WtW*H-WtV;
- init_delta=stop_rule([W',H],[GradW',GradH]);
- tolH=max(tol,1e-3)*init_delta;
- tolW=tolH;% Stopping tolerance
- W=W';
- k=1;
- tic
- RRE(k) = nmf_norm_fro( X, W', H);
- T(k) = 0;
- % main loop
- while(toc<= Tmax+0.05)
-
- % Optimize H with W fixed
- [H,iterH]=NNLS(H,WtW,WtV,ITER_MIN,ITER_MAX,tolH);
-
- if iterH<=ITER_MIN
- tolH=tolH/10;
- end
-
- HHt=H*H'; HVt=H*X';
-
- % Optimize W with H fixed
- [W,iterW,GradW]=NNLS(W,HHt,HVt,ITER_MIN,ITER_MAX,tolW);
- if iterW<=ITER_MIN
- tolW=tolW/10;
- end
- WtW=W*W'; WtV=W*X;
- GradH=WtW*H-WtV;
- % HIS.niter=niter+iterH+iterW;
- delta=stop_rule([W,H],[GradW,GradH]);
- % Output running detials
-
- % % Stopping condition
- if (delta<=tol*init_delta && k>=MinIter)
- break;
- end
- if toc-(k-1)*0.05>=0.05
- k = k+1;
- RRE(k) = nmf_norm_fro( X, W', H);
- T(k) = toc;
- end
-
- end %end of loop
- W=W';
- return;
- function [H,iter,Grad]=NNLS(Z,WtW,WtV,iterMin,iterMax,tol)
- if ~issparse(WtW)
- L=norm(WtW); % Lipschitz constant
- else
- L=norm(full(WtW));
- end
- H=Z; % Initialization
- Grad=WtW*Z-WtV; % Gradient
- alpha1=1;
- for iter=1:iterMax
- H0=H;
- H=max(Z-Grad/L,0); % Calculate sequence 'Y'
- alpha2=0.5*(1+sqrt(1+4*alpha1^2));
- Z=H+((alpha1-1)/alpha2)*(H-H0);
- alpha1=alpha2;
- Grad=WtW*Z-WtV;
-
- % Stopping criteria
- if iter>=iterMin
- % Lin's stopping condition
- pgn=stop_rule(Z,Grad);
- if pgn<=tol
- break;
- end
- end
- end
- Grad=WtW*H-WtV;
- return;
- function f = nmf_norm_fro(X, W, H)
- % Author : F. Yahaya
- % Date: 13/04/2018
- % Contact: farouk.yahaya@univ-littoral.fr
- % Goal: compute a normalized error reconstruction of the mixing matrix V
- % "Normalized" means that we divide the squared Frobenius norm of the error
- % by the squared Frobenius norm of the matrix V
- % Note: To express the error in dB, you have to compute 10*log10(f)
- %
- f = norm(X - W * H,'fro')^2/norm(X,'fro')^2;
- return;
|