123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- function [ G , F , R ] = IN_Cal( W , X , G , F , Omega_G , Omega_F , Phi_G , Phi_F , F_theo , N_iter )
- W2 = W.^2;
- Omega_Bar_G = ones(size(G))-Omega_G;
- Omega_Bar_F = ones(size(F))-Omega_F;
- Delta_G = G.*Omega_Bar_G;
- Delta_F = F.*Omega_Bar_F;
- R = zeros(N_iter+1,1);
- R(1) = norm(F(2,1:end-1)-F_theo(2,1:end-1),2)/sqrt(size(F_theo,2)-1);
- for i = 1 : N_iter
-
- % updating G
- Delta_G = Updt_Delta_G( W2 , X , Delta_G , Phi_G , F , Omega_Bar_G );
- G = Phi_G + Delta_G;
-
- % updating F
- Delta_F = Updt_Delta_F( W2 , X , G , Delta_F , Phi_F , Omega_Bar_F );
- F = Phi_F + Delta_F;
-
- R(i+1) = norm(F(2,1:end-1)-F_theo(2,1:end-1),2)/sqrt(size(F_theo,2)-1);
-
- end
- end
- function [ Delta_F ] = Updt_Delta_F( W , X , G , Delta_F , Phi_F , Omega_B_F )
- %%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Update rule for Delta_F %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%
- Delta_F = Delta_F.*(Omega_B_F).*((G'*(W.*secu_plus(X-G*Phi_F)))./(G'*(W.*(G*Delta_F))));
- Delta_F(isnan(Delta_F))=0;
- end
- function [ Delta_G ] = Updt_Delta_G( W , X , Delta_G , Phi_G , F , Omega_B_G )
- %%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Update rule for Delta_G %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%
- Delta_G = Delta_G.*(Omega_B_G).*((W.*secu_plus(X-Phi_G*F))*F')./((W.*(Delta_G*F)*F')); % mise à jour
- Delta_G(isnan(Delta_G))=0;
- end
- function [toto] = secu_plus(tutu,s)
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Goal: Security in the NMF procedure which project the negative data to
- % epsilon (small user-defined threshold
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- if(nargin<2)
- s=1.e-12;
- end
- toto=max(tutu,s);
- toto(isnan(tutu)) = 0;
- end
|