zlarf.f 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. *> \brief \b ZLARF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER SIDE
  25. * INTEGER INCV, LDC, M, N
  26. * COMPLEX*16 TAU
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLARF applies a complex elementary reflector H to a complex M-by-N
  39. *> matrix C, from either the left or the right. H is represented in the
  40. *> form
  41. *>
  42. *> H = I - tau * v * v**H
  43. *>
  44. *> where tau is a complex scalar and v is a complex vector.
  45. *>
  46. *> If tau = 0, then H is taken to be the unit matrix.
  47. *>
  48. *> To apply H**H, supply conjg(tau) instead
  49. *> tau.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] SIDE
  56. *> \verbatim
  57. *> SIDE is CHARACTER*1
  58. *> = 'L': form H * C
  59. *> = 'R': form C * H
  60. *> \endverbatim
  61. *>
  62. *> \param[in] M
  63. *> \verbatim
  64. *> M is INTEGER
  65. *> The number of rows of the matrix C.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The number of columns of the matrix C.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] V
  75. *> \verbatim
  76. *> V is COMPLEX*16 array, dimension
  77. *> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
  78. *> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
  79. *> The vector v in the representation of H. V is not used if
  80. *> TAU = 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] INCV
  84. *> \verbatim
  85. *> INCV is INTEGER
  86. *> The increment between elements of v. INCV <> 0.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] TAU
  90. *> \verbatim
  91. *> TAU is COMPLEX*16
  92. *> The value tau in the representation of H.
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] C
  96. *> \verbatim
  97. *> C is COMPLEX*16 array, dimension (LDC,N)
  98. *> On entry, the M-by-N matrix C.
  99. *> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
  100. *> or C * H if SIDE = 'R'.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDC
  104. *> \verbatim
  105. *> LDC is INTEGER
  106. *> The leading dimension of the array C. LDC >= max(1,M).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] WORK
  110. *> \verbatim
  111. *> WORK is COMPLEX*16 array, dimension
  112. *> (N) if SIDE = 'L'
  113. *> or (M) if SIDE = 'R'
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date November 2011
  125. *
  126. *> \ingroup complex16OTHERauxiliary
  127. *
  128. * =====================================================================
  129. SUBROUTINE ZLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
  130. *
  131. * -- LAPACK auxiliary routine (version 3.4.0) --
  132. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  133. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134. * November 2011
  135. *
  136. * .. Scalar Arguments ..
  137. CHARACTER SIDE
  138. INTEGER INCV, LDC, M, N
  139. COMPLEX*16 TAU
  140. * ..
  141. * .. Array Arguments ..
  142. COMPLEX*16 C( LDC, * ), V( * ), WORK( * )
  143. * ..
  144. *
  145. * =====================================================================
  146. *
  147. * .. Parameters ..
  148. COMPLEX*16 ONE, ZERO
  149. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  150. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  151. * ..
  152. * .. Local Scalars ..
  153. LOGICAL APPLYLEFT
  154. INTEGER I, LASTV, LASTC
  155. * ..
  156. * .. External Subroutines ..
  157. EXTERNAL ZGEMV, ZGERC
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. INTEGER ILAZLR, ILAZLC
  162. EXTERNAL LSAME, ILAZLR, ILAZLC
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. APPLYLEFT = LSAME( SIDE, 'L' )
  167. LASTV = 0
  168. LASTC = 0
  169. IF( TAU.NE.ZERO ) THEN
  170. * Set up variables for scanning V. LASTV begins pointing to the end
  171. * of V.
  172. IF( APPLYLEFT ) THEN
  173. LASTV = M
  174. ELSE
  175. LASTV = N
  176. END IF
  177. IF( INCV.GT.0 ) THEN
  178. I = 1 + (LASTV-1) * INCV
  179. ELSE
  180. I = 1
  181. END IF
  182. * Look for the last non-zero row in V.
  183. DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
  184. LASTV = LASTV - 1
  185. I = I - INCV
  186. END DO
  187. IF( APPLYLEFT ) THEN
  188. * Scan for the last non-zero column in C(1:lastv,:).
  189. LASTC = ILAZLC(LASTV, N, C, LDC)
  190. ELSE
  191. * Scan for the last non-zero row in C(:,1:lastv).
  192. LASTC = ILAZLR(M, LASTV, C, LDC)
  193. END IF
  194. END IF
  195. * Note that lastc.eq.0 renders the BLAS operations null; no special
  196. * case is needed at this level.
  197. IF( APPLYLEFT ) THEN
  198. *
  199. * Form H * C
  200. *
  201. IF( LASTV.GT.0 ) THEN
  202. *
  203. * w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
  204. *
  205. CALL ZGEMV( 'Conjugate transpose', LASTV, LASTC, ONE,
  206. $ C, LDC, V, INCV, ZERO, WORK, 1 )
  207. *
  208. * C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H
  209. *
  210. CALL ZGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
  211. END IF
  212. ELSE
  213. *
  214. * Form C * H
  215. *
  216. IF( LASTV.GT.0 ) THEN
  217. *
  218. * w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
  219. *
  220. CALL ZGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
  221. $ V, INCV, ZERO, WORK, 1 )
  222. *
  223. * C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H
  224. *
  225. CALL ZGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
  226. END IF
  227. END IF
  228. RETURN
  229. *
  230. * End of ZLARF
  231. *
  232. END