basicstuff.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #define EIGEN_NO_STATIC_ASSERT
  10. #include "main.h"
  11. template<typename MatrixType> void basicStuff(const MatrixType& m)
  12. {
  13. typedef typename MatrixType::Scalar Scalar;
  14. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  15. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  16. Index rows = m.rows();
  17. Index cols = m.cols();
  18. // this test relies a lot on Random.h, and there's not much more that we can do
  19. // to test it, hence I consider that we will have tested Random.h
  20. MatrixType m1 = MatrixType::Random(rows, cols),
  21. m2 = MatrixType::Random(rows, cols),
  22. m3(rows, cols),
  23. mzero = MatrixType::Zero(rows, cols),
  24. square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
  25. VectorType v1 = VectorType::Random(rows),
  26. vzero = VectorType::Zero(rows);
  27. SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
  28. Scalar x = 0;
  29. while(x == Scalar(0)) x = internal::random<Scalar>();
  30. Index r = internal::random<Index>(0, rows-1),
  31. c = internal::random<Index>(0, cols-1);
  32. m1.coeffRef(r,c) = x;
  33. VERIFY_IS_APPROX(x, m1.coeff(r,c));
  34. m1(r,c) = x;
  35. VERIFY_IS_APPROX(x, m1(r,c));
  36. v1.coeffRef(r) = x;
  37. VERIFY_IS_APPROX(x, v1.coeff(r));
  38. v1(r) = x;
  39. VERIFY_IS_APPROX(x, v1(r));
  40. v1[r] = x;
  41. VERIFY_IS_APPROX(x, v1[r]);
  42. VERIFY_IS_APPROX( v1, v1);
  43. VERIFY_IS_NOT_APPROX( v1, 2*v1);
  44. VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
  45. VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
  46. VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
  47. VERIFY_IS_APPROX( vzero, v1-v1);
  48. VERIFY_IS_APPROX( m1, m1);
  49. VERIFY_IS_NOT_APPROX( m1, 2*m1);
  50. VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
  51. VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
  52. VERIFY_IS_APPROX( mzero, m1-m1);
  53. // always test operator() on each read-only expression class,
  54. // in order to check const-qualifiers.
  55. // indeed, if an expression class (here Zero) is meant to be read-only,
  56. // hence has no _write() method, the corresponding MatrixBase method (here zero())
  57. // should return a const-qualified object so that it is the const-qualified
  58. // operator() that gets called, which in turn calls _read().
  59. VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
  60. // now test copying a row-vector into a (column-)vector and conversely.
  61. square.col(r) = square.row(r).eval();
  62. Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
  63. Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
  64. rv = square.row(r);
  65. cv = square.col(r);
  66. VERIFY_IS_APPROX(rv, cv.transpose());
  67. if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
  68. {
  69. VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
  70. }
  71. if(cols!=1 && rows!=1)
  72. {
  73. VERIFY_RAISES_ASSERT(m1[0]);
  74. VERIFY_RAISES_ASSERT((m1+m1)[0]);
  75. }
  76. VERIFY_IS_APPROX(m3 = m1,m1);
  77. MatrixType m4;
  78. VERIFY_IS_APPROX(m4 = m1,m1);
  79. m3.real() = m1.real();
  80. VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
  81. VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
  82. // check == / != operators
  83. VERIFY(m1==m1);
  84. VERIFY(m1!=m2);
  85. VERIFY(!(m1==m2));
  86. VERIFY(!(m1!=m1));
  87. m1 = m2;
  88. VERIFY(m1==m2);
  89. VERIFY(!(m1!=m2));
  90. // check automatic transposition
  91. sm2.setZero();
  92. for(typename MatrixType::Index i=0;i<rows;++i)
  93. sm2.col(i) = sm1.row(i);
  94. VERIFY_IS_APPROX(sm2,sm1.transpose());
  95. sm2.setZero();
  96. for(typename MatrixType::Index i=0;i<rows;++i)
  97. sm2.col(i).noalias() = sm1.row(i);
  98. VERIFY_IS_APPROX(sm2,sm1.transpose());
  99. sm2.setZero();
  100. for(typename MatrixType::Index i=0;i<rows;++i)
  101. sm2.col(i).noalias() += sm1.row(i);
  102. VERIFY_IS_APPROX(sm2,sm1.transpose());
  103. sm2.setZero();
  104. for(typename MatrixType::Index i=0;i<rows;++i)
  105. sm2.col(i).noalias() -= sm1.row(i);
  106. VERIFY_IS_APPROX(sm2,-sm1.transpose());
  107. // check ternary usage
  108. {
  109. bool b = internal::random<int>(0,10)>5;
  110. m3 = b ? m1 : m2;
  111. if(b) VERIFY_IS_APPROX(m3,m1);
  112. else VERIFY_IS_APPROX(m3,m2);
  113. m3 = b ? -m1 : m2;
  114. if(b) VERIFY_IS_APPROX(m3,-m1);
  115. else VERIFY_IS_APPROX(m3,m2);
  116. m3 = b ? m1 : -m2;
  117. if(b) VERIFY_IS_APPROX(m3,m1);
  118. else VERIFY_IS_APPROX(m3,-m2);
  119. }
  120. }
  121. template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
  122. {
  123. typedef typename MatrixType::Scalar Scalar;
  124. typedef typename NumTraits<Scalar>::Real RealScalar;
  125. typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
  126. Index rows = m.rows();
  127. Index cols = m.cols();
  128. Scalar s1 = internal::random<Scalar>(),
  129. s2 = internal::random<Scalar>();
  130. VERIFY(numext::real(s1)==numext::real_ref(s1));
  131. VERIFY(numext::imag(s1)==numext::imag_ref(s1));
  132. numext::real_ref(s1) = numext::real(s2);
  133. numext::imag_ref(s1) = numext::imag(s2);
  134. VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
  135. // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
  136. RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
  137. rm2 = RealMatrixType::Random(rows,cols);
  138. MatrixType cm(rows,cols);
  139. cm.real() = rm1;
  140. cm.imag() = rm2;
  141. VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
  142. VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
  143. rm1.setZero();
  144. rm2.setZero();
  145. rm1 = cm.real();
  146. rm2 = cm.imag();
  147. VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
  148. VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
  149. cm.real().setZero();
  150. VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
  151. VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
  152. }
  153. #ifdef EIGEN_TEST_PART_2
  154. void casting()
  155. {
  156. Matrix4f m = Matrix4f::Random(), m2;
  157. Matrix4d n = m.cast<double>();
  158. VERIFY(m.isApprox(n.cast<float>()));
  159. m2 = m.cast<float>(); // check the specialization when NewType == Type
  160. VERIFY(m.isApprox(m2));
  161. }
  162. #endif
  163. template <typename Scalar>
  164. void fixedSizeMatrixConstruction()
  165. {
  166. Scalar raw[4];
  167. for(int k=0; k<4; ++k)
  168. raw[k] = internal::random<Scalar>();
  169. {
  170. Matrix<Scalar,4,1> m(raw);
  171. Array<Scalar,4,1> a(raw);
  172. for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
  173. for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
  174. VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
  175. VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
  176. }
  177. {
  178. Matrix<Scalar,3,1> m(raw);
  179. Array<Scalar,3,1> a(raw);
  180. for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
  181. for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
  182. VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
  183. VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
  184. }
  185. {
  186. Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
  187. Array<Scalar,2,1> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
  188. for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
  189. for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
  190. VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
  191. VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
  192. for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
  193. for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
  194. }
  195. {
  196. Matrix<Scalar,1,2> m(raw),
  197. m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
  198. m3( (int(raw[0])), (int(raw[1])) ),
  199. m4( (float(raw[0])), (float(raw[1])) );
  200. Array<Scalar,1,2> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
  201. for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
  202. for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
  203. VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
  204. VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
  205. for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
  206. for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
  207. for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
  208. for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
  209. }
  210. {
  211. Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
  212. Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
  213. VERIFY(m(0) == raw[0]);
  214. VERIFY(a(0) == raw[0]);
  215. VERIFY(m1(0) == raw[0]);
  216. VERIFY(a1(0) == raw[0]);
  217. VERIFY(m2(0) == DenseIndex(raw[0]));
  218. VERIFY(a2(0) == DenseIndex(raw[0]));
  219. VERIFY(m3(0) == int(raw[0]));
  220. VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
  221. VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
  222. }
  223. }
  224. void test_basicstuff()
  225. {
  226. for(int i = 0; i < g_repeat; i++) {
  227. CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
  228. CALL_SUBTEST_2( basicStuff(Matrix4d()) );
  229. CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  230. CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  231. CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  232. CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
  233. CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  234. CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  235. CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  236. }
  237. CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
  238. CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
  239. CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
  240. CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
  241. CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
  242. CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
  243. CALL_SUBTEST_2(casting());
  244. }