block.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
  10. #include "main.h"
  11. template<typename MatrixType, typename Index, typename Scalar>
  12. typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
  13. block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
  14. // check cwise-Functions:
  15. VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
  16. VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
  17. VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
  18. VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
  19. return Scalar(0);
  20. }
  21. template<typename MatrixType, typename Index, typename Scalar>
  22. typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
  23. block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
  24. return Scalar(0);
  25. }
  26. template<typename MatrixType> void block(const MatrixType& m)
  27. {
  28. typedef typename MatrixType::Scalar Scalar;
  29. typedef typename MatrixType::RealScalar RealScalar;
  30. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  31. typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
  32. typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::IsRowMajor?RowMajor:ColMajor> DynamicMatrixType;
  33. typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
  34. Index rows = m.rows();
  35. Index cols = m.cols();
  36. MatrixType m1 = MatrixType::Random(rows, cols),
  37. m1_copy = m1,
  38. m2 = MatrixType::Random(rows, cols),
  39. m3(rows, cols),
  40. ones = MatrixType::Ones(rows, cols);
  41. VectorType v1 = VectorType::Random(rows);
  42. Scalar s1 = internal::random<Scalar>();
  43. Index r1 = internal::random<Index>(0,rows-1);
  44. Index r2 = internal::random<Index>(r1,rows-1);
  45. Index c1 = internal::random<Index>(0,cols-1);
  46. Index c2 = internal::random<Index>(c1,cols-1);
  47. block_real_only(m1, r1, r2, c1, c1, s1);
  48. //check row() and col()
  49. VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
  50. //check operator(), both constant and non-constant, on row() and col()
  51. m1 = m1_copy;
  52. m1.row(r1) += s1 * m1_copy.row(r2);
  53. VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
  54. // check nested block xpr on lhs
  55. m1.row(r1).row(0) += s1 * m1_copy.row(r2);
  56. VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
  57. m1 = m1_copy;
  58. m1.col(c1) += s1 * m1_copy.col(c2);
  59. VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
  60. m1.col(c1).col(0) += s1 * m1_copy.col(c2);
  61. VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
  62. //check block()
  63. Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
  64. RowVectorType br1(m1.block(r1,0,1,cols));
  65. VectorType bc1(m1.block(0,c1,rows,1));
  66. VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
  67. VERIFY_IS_EQUAL(m1.row(r1), br1);
  68. VERIFY_IS_EQUAL(m1.col(c1), bc1);
  69. //check operator(), both constant and non-constant, on block()
  70. m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
  71. m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
  72. enum {
  73. BlockRows = 2,
  74. BlockCols = 5
  75. };
  76. if (rows>=5 && cols>=8)
  77. {
  78. // test fixed block() as lvalue
  79. m1.template block<BlockRows,BlockCols>(1,1) *= s1;
  80. // test operator() on fixed block() both as constant and non-constant
  81. m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
  82. // check that fixed block() and block() agree
  83. Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
  84. VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
  85. // same tests with mixed fixed/dynamic size
  86. m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
  87. m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
  88. Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
  89. VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
  90. }
  91. if (rows>2)
  92. {
  93. // test sub vectors
  94. VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
  95. VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
  96. VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
  97. VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
  98. Index i = rows-2;
  99. VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
  100. VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
  101. VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
  102. VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
  103. i = internal::random<Index>(0,rows-2);
  104. VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
  105. }
  106. // stress some basic stuffs with block matrices
  107. VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
  108. VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
  109. VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
  110. VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
  111. // check that linear acccessors works on blocks
  112. m1 = m1_copy;
  113. if((MatrixType::Flags&RowMajorBit)==0)
  114. VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
  115. else
  116. VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
  117. // now test some block-inside-of-block.
  118. // expressions with direct access
  119. VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
  120. VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
  121. VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
  122. VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
  123. VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
  124. // expressions without direct access
  125. VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
  126. VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
  127. VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
  128. VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
  129. VERIFY_IS_APPROX( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
  130. VERIFY_IS_APPROX( (m1*1).topRows(r1), m1.topRows(r1) );
  131. VERIFY_IS_APPROX( (m1*1).leftCols(c1), m1.leftCols(c1) );
  132. VERIFY_IS_APPROX( (m1*1).transpose().topRows(c1), m1.transpose().topRows(c1) );
  133. VERIFY_IS_APPROX( (m1*1).transpose().leftCols(r1), m1.transpose().leftCols(r1) );
  134. VERIFY_IS_APPROX( (m1*1).transpose().middleRows(c1,c2-c1+1), m1.transpose().middleRows(c1,c2-c1+1) );
  135. VERIFY_IS_APPROX( (m1*1).transpose().middleCols(r1,r2-r1+1), m1.transpose().middleCols(r1,r2-r1+1) );
  136. // evaluation into plain matrices from expressions with direct access (stress MapBase)
  137. DynamicMatrixType dm;
  138. DynamicVectorType dv;
  139. dm.setZero();
  140. dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
  141. VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
  142. dm.setZero();
  143. dv.setZero();
  144. dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
  145. dv = m1.row(r1).segment(c1,c2-c1+1);
  146. VERIFY_IS_EQUAL(dv, dm);
  147. dm.setZero();
  148. dv.setZero();
  149. dm = m1.col(c1).segment(r1,r2-r1+1);
  150. dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
  151. VERIFY_IS_EQUAL(dv, dm);
  152. dm.setZero();
  153. dv.setZero();
  154. dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
  155. dv = m1.row(r1).segment(c1,c2-c1+1);
  156. VERIFY_IS_EQUAL(dv, dm);
  157. dm.setZero();
  158. dv.setZero();
  159. dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
  160. dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
  161. VERIFY_IS_EQUAL(dv, dm);
  162. VERIFY_IS_EQUAL( (m1.template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
  163. VERIFY_IS_EQUAL( (m1.template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
  164. VERIFY_IS_EQUAL( ((m1*1).template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
  165. VERIFY_IS_EQUAL( ((m1*1).template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
  166. if (rows>=2 && cols>=2)
  167. {
  168. VERIFY_RAISES_ASSERT( m1 += m1.col(0) );
  169. VERIFY_RAISES_ASSERT( m1 -= m1.col(0) );
  170. VERIFY_RAISES_ASSERT( m1.array() *= m1.col(0).array() );
  171. VERIFY_RAISES_ASSERT( m1.array() /= m1.col(0).array() );
  172. }
  173. }
  174. template<typename MatrixType>
  175. void compare_using_data_and_stride(const MatrixType& m)
  176. {
  177. Index rows = m.rows();
  178. Index cols = m.cols();
  179. Index size = m.size();
  180. Index innerStride = m.innerStride();
  181. Index outerStride = m.outerStride();
  182. Index rowStride = m.rowStride();
  183. Index colStride = m.colStride();
  184. const typename MatrixType::Scalar* data = m.data();
  185. for(int j=0;j<cols;++j)
  186. for(int i=0;i<rows;++i)
  187. VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
  188. if(!MatrixType::IsVectorAtCompileTime)
  189. {
  190. for(int j=0;j<cols;++j)
  191. for(int i=0;i<rows;++i)
  192. VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
  193. ? i*outerStride + j*innerStride
  194. : j*outerStride + i*innerStride]);
  195. }
  196. if(MatrixType::IsVectorAtCompileTime)
  197. {
  198. VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
  199. for (int i=0;i<size;++i)
  200. VERIFY(m.coeff(i) == data[i*innerStride]);
  201. }
  202. }
  203. template<typename MatrixType>
  204. void data_and_stride(const MatrixType& m)
  205. {
  206. Index rows = m.rows();
  207. Index cols = m.cols();
  208. Index r1 = internal::random<Index>(0,rows-1);
  209. Index r2 = internal::random<Index>(r1,rows-1);
  210. Index c1 = internal::random<Index>(0,cols-1);
  211. Index c2 = internal::random<Index>(c1,cols-1);
  212. MatrixType m1 = MatrixType::Random(rows, cols);
  213. compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
  214. compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
  215. compare_using_data_and_stride(m1.row(r1));
  216. compare_using_data_and_stride(m1.col(c1));
  217. compare_using_data_and_stride(m1.row(r1).transpose());
  218. compare_using_data_and_stride(m1.col(c1).transpose());
  219. }
  220. void test_block()
  221. {
  222. for(int i = 0; i < g_repeat; i++) {
  223. CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
  224. CALL_SUBTEST_2( block(Matrix4d()) );
  225. CALL_SUBTEST_3( block(MatrixXcf(3, 3)) );
  226. CALL_SUBTEST_4( block(MatrixXi(8, 12)) );
  227. CALL_SUBTEST_5( block(MatrixXcd(20, 20)) );
  228. CALL_SUBTEST_6( block(MatrixXf(20, 20)) );
  229. CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
  230. #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
  231. CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
  232. CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
  233. #endif
  234. }
  235. }