eigensolver_generic.cpp 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
  6. //
  7. // This Source Code Form is subject to the terms of the Mozilla
  8. // Public License v. 2.0. If a copy of the MPL was not distributed
  9. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  10. #include "main.h"
  11. #include <limits>
  12. #include <Eigen/Eigenvalues>
  13. template<typename MatrixType> void eigensolver(const MatrixType& m)
  14. {
  15. /* this test covers the following files:
  16. EigenSolver.h
  17. */
  18. Index rows = m.rows();
  19. Index cols = m.cols();
  20. typedef typename MatrixType::Scalar Scalar;
  21. typedef typename NumTraits<Scalar>::Real RealScalar;
  22. typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  23. typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
  24. MatrixType a = MatrixType::Random(rows,cols);
  25. MatrixType a1 = MatrixType::Random(rows,cols);
  26. MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
  27. EigenSolver<MatrixType> ei0(symmA);
  28. VERIFY_IS_EQUAL(ei0.info(), Success);
  29. VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
  30. VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
  31. (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
  32. EigenSolver<MatrixType> ei1(a);
  33. VERIFY_IS_EQUAL(ei1.info(), Success);
  34. VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
  35. VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
  36. ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
  37. VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
  38. VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
  39. EigenSolver<MatrixType> ei2;
  40. ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
  41. VERIFY_IS_EQUAL(ei2.info(), Success);
  42. VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
  43. VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
  44. if (rows > 2) {
  45. ei2.setMaxIterations(1).compute(a);
  46. VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
  47. VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
  48. }
  49. EigenSolver<MatrixType> eiNoEivecs(a, false);
  50. VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
  51. VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
  52. VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
  53. MatrixType id = MatrixType::Identity(rows, cols);
  54. VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
  55. if (rows > 2 && rows < 20)
  56. {
  57. // Test matrix with NaN
  58. a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
  59. EigenSolver<MatrixType> eiNaN(a);
  60. VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success);
  61. }
  62. // regression test for bug 1098
  63. {
  64. EigenSolver<MatrixType> eig(a.adjoint() * a);
  65. eig.compute(a.adjoint() * a);
  66. }
  67. // regression test for bug 478
  68. {
  69. a.setZero();
  70. EigenSolver<MatrixType> ei3(a);
  71. VERIFY_IS_EQUAL(ei3.info(), Success);
  72. VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
  73. VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
  74. }
  75. }
  76. template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
  77. {
  78. EigenSolver<MatrixType> eig;
  79. VERIFY_RAISES_ASSERT(eig.eigenvectors());
  80. VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
  81. VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
  82. VERIFY_RAISES_ASSERT(eig.eigenvalues());
  83. MatrixType a = MatrixType::Random(m.rows(),m.cols());
  84. eig.compute(a, false);
  85. VERIFY_RAISES_ASSERT(eig.eigenvectors());
  86. VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
  87. }
  88. void test_eigensolver_generic()
  89. {
  90. int s = 0;
  91. for(int i = 0; i < g_repeat; i++) {
  92. CALL_SUBTEST_1( eigensolver(Matrix4f()) );
  93. s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
  94. CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
  95. TEST_SET_BUT_UNUSED_VARIABLE(s)
  96. // some trivial but implementation-wise tricky cases
  97. CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
  98. CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
  99. CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
  100. CALL_SUBTEST_4( eigensolver(Matrix2d()) );
  101. }
  102. CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
  103. s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
  104. CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
  105. CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
  106. CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
  107. // Test problem size constructors
  108. CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
  109. // regression test for bug 410
  110. CALL_SUBTEST_2(
  111. {
  112. MatrixXd A(1,1);
  113. A(0,0) = std::sqrt(-1.); // is Not-a-Number
  114. Eigen::EigenSolver<MatrixXd> solver(A);
  115. VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
  116. }
  117. );
  118. #ifdef EIGEN_TEST_PART_2
  119. {
  120. // regression test for bug 793
  121. MatrixXd a(3,3);
  122. a << 0, 0, 1,
  123. 1, 1, 1,
  124. 1, 1e+200, 1;
  125. Eigen::EigenSolver<MatrixXd> eig(a);
  126. double scale = 1e-200; // scale to avoid overflow during the comparisons
  127. VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale);
  128. VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale);
  129. }
  130. {
  131. // check a case where all eigenvalues are null.
  132. MatrixXd a(2,2);
  133. a << 1, 1,
  134. -1, -1;
  135. Eigen::EigenSolver<MatrixXd> eig(a);
  136. VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
  137. VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.);
  138. VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.);
  139. VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
  140. VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
  141. }
  142. #endif
  143. TEST_SET_BUT_UNUSED_VARIABLE(s)
  144. }