packetmath.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  6. //
  7. // This Source Code Form is subject to the terms of the Mozilla
  8. // Public License v. 2.0. If a copy of the MPL was not distributed
  9. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  10. #include "main.h"
  11. #include "unsupported/Eigen/SpecialFunctions"
  12. #if defined __GNUC__ && __GNUC__>=6
  13. #pragma GCC diagnostic ignored "-Wignored-attributes"
  14. #endif
  15. // using namespace Eigen;
  16. namespace Eigen {
  17. namespace internal {
  18. template<typename T> T negate(const T& x) { return -x; }
  19. }
  20. }
  21. // NOTE: we disbale inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
  22. template<typename Scalar> EIGEN_DONT_INLINE
  23. bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
  24. {
  25. return internal::isMuchSmallerThan(a-b, refvalue);
  26. }
  27. template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
  28. {
  29. for (int i=0; i<size; ++i)
  30. {
  31. if (!isApproxAbs(a[i],b[i],refvalue))
  32. {
  33. std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
  34. return false;
  35. }
  36. }
  37. return true;
  38. }
  39. template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
  40. {
  41. for (int i=0; i<size; ++i)
  42. {
  43. if (a[i]!=b[i] && !internal::isApprox(a[i],b[i]))
  44. {
  45. std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n";
  46. return false;
  47. }
  48. }
  49. return true;
  50. }
  51. #define CHECK_CWISE1(REFOP, POP) { \
  52. for (int i=0; i<PacketSize; ++i) \
  53. ref[i] = REFOP(data1[i]); \
  54. internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
  55. VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
  56. }
  57. template<bool Cond,typename Packet>
  58. struct packet_helper
  59. {
  60. template<typename T>
  61. inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
  62. template<typename T>
  63. inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
  64. };
  65. template<typename Packet>
  66. struct packet_helper<false,Packet>
  67. {
  68. template<typename T>
  69. inline T load(const T* from) const { return *from; }
  70. template<typename T>
  71. inline void store(T* to, const T& x) const { *to = x; }
  72. };
  73. #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
  74. packet_helper<COND,Packet> h; \
  75. for (int i=0; i<PacketSize; ++i) \
  76. ref[i] = REFOP(data1[i]); \
  77. h.store(data2, POP(h.load(data1))); \
  78. VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
  79. }
  80. #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
  81. packet_helper<COND,Packet> h; \
  82. for (int i=0; i<PacketSize; ++i) \
  83. ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
  84. h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
  85. VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
  86. }
  87. #define REF_ADD(a,b) ((a)+(b))
  88. #define REF_SUB(a,b) ((a)-(b))
  89. #define REF_MUL(a,b) ((a)*(b))
  90. #define REF_DIV(a,b) ((a)/(b))
  91. template<typename Scalar> void packetmath()
  92. {
  93. using std::abs;
  94. typedef internal::packet_traits<Scalar> PacketTraits;
  95. typedef typename PacketTraits::type Packet;
  96. const int PacketSize = PacketTraits::size;
  97. typedef typename NumTraits<Scalar>::Real RealScalar;
  98. const int max_size = PacketSize > 4 ? PacketSize : 4;
  99. const int size = PacketSize*max_size;
  100. EIGEN_ALIGN_MAX Scalar data1[size];
  101. EIGEN_ALIGN_MAX Scalar data2[size];
  102. EIGEN_ALIGN_MAX Packet packets[PacketSize*2];
  103. EIGEN_ALIGN_MAX Scalar ref[size];
  104. RealScalar refvalue = 0;
  105. for (int i=0; i<size; ++i)
  106. {
  107. data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
  108. data2[i] = internal::random<Scalar>()/RealScalar(PacketSize);
  109. refvalue = (std::max)(refvalue,abs(data1[i]));
  110. }
  111. internal::pstore(data2, internal::pload<Packet>(data1));
  112. VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
  113. for (int offset=0; offset<PacketSize; ++offset)
  114. {
  115. internal::pstore(data2, internal::ploadu<Packet>(data1+offset));
  116. VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu");
  117. }
  118. for (int offset=0; offset<PacketSize; ++offset)
  119. {
  120. internal::pstoreu(data2+offset, internal::pload<Packet>(data1));
  121. VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu");
  122. }
  123. for (int offset=0; offset<PacketSize; ++offset)
  124. {
  125. packets[0] = internal::pload<Packet>(data1);
  126. packets[1] = internal::pload<Packet>(data1+PacketSize);
  127. if (offset==0) internal::palign<0>(packets[0], packets[1]);
  128. else if (offset==1) internal::palign<1>(packets[0], packets[1]);
  129. else if (offset==2) internal::palign<2>(packets[0], packets[1]);
  130. else if (offset==3) internal::palign<3>(packets[0], packets[1]);
  131. else if (offset==4) internal::palign<4>(packets[0], packets[1]);
  132. else if (offset==5) internal::palign<5>(packets[0], packets[1]);
  133. else if (offset==6) internal::palign<6>(packets[0], packets[1]);
  134. else if (offset==7) internal::palign<7>(packets[0], packets[1]);
  135. else if (offset==8) internal::palign<8>(packets[0], packets[1]);
  136. else if (offset==9) internal::palign<9>(packets[0], packets[1]);
  137. else if (offset==10) internal::palign<10>(packets[0], packets[1]);
  138. else if (offset==11) internal::palign<11>(packets[0], packets[1]);
  139. else if (offset==12) internal::palign<12>(packets[0], packets[1]);
  140. else if (offset==13) internal::palign<13>(packets[0], packets[1]);
  141. else if (offset==14) internal::palign<14>(packets[0], packets[1]);
  142. else if (offset==15) internal::palign<15>(packets[0], packets[1]);
  143. internal::pstore(data2, packets[0]);
  144. for (int i=0; i<PacketSize; ++i)
  145. ref[i] = data1[i+offset];
  146. VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign");
  147. }
  148. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd);
  149. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub);
  150. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul);
  151. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasNegate);
  152. VERIFY((internal::is_same<Scalar,int>::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv);
  153. CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd);
  154. CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub);
  155. CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
  156. CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
  157. CHECK_CWISE1(internal::negate, internal::pnegate);
  158. CHECK_CWISE1(numext::conj, internal::pconj);
  159. for(int offset=0;offset<3;++offset)
  160. {
  161. for (int i=0; i<PacketSize; ++i)
  162. ref[i] = data1[offset];
  163. internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
  164. VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1");
  165. }
  166. {
  167. for (int i=0; i<PacketSize*4; ++i)
  168. ref[i] = data1[i/PacketSize];
  169. Packet A0, A1, A2, A3;
  170. internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
  171. internal::pstore(data2+0*PacketSize, A0);
  172. internal::pstore(data2+1*PacketSize, A1);
  173. internal::pstore(data2+2*PacketSize, A2);
  174. internal::pstore(data2+3*PacketSize, A3);
  175. VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4");
  176. }
  177. {
  178. for (int i=0; i<PacketSize*2; ++i)
  179. ref[i] = data1[i/PacketSize];
  180. Packet A0, A1;
  181. internal::pbroadcast2<Packet>(data1, A0, A1);
  182. internal::pstore(data2+0*PacketSize, A0);
  183. internal::pstore(data2+1*PacketSize, A1);
  184. VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
  185. }
  186. VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
  187. if(PacketSize>1)
  188. {
  189. for(int offset=0;offset<4;++offset)
  190. {
  191. for(int i=0;i<PacketSize/2;++i)
  192. ref[2*i+0] = ref[2*i+1] = data1[offset+i];
  193. internal::pstore(data2,internal::ploaddup<Packet>(data1+offset));
  194. VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup");
  195. }
  196. }
  197. if(PacketSize>2)
  198. {
  199. for(int offset=0;offset<4;++offset)
  200. {
  201. for(int i=0;i<PacketSize/4;++i)
  202. ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i];
  203. internal::pstore(data2,internal::ploadquad<Packet>(data1+offset));
  204. VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad");
  205. }
  206. }
  207. ref[0] = 0;
  208. for (int i=0; i<PacketSize; ++i)
  209. ref[0] += data1[i];
  210. VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
  211. {
  212. int newsize = PacketSize>4?PacketSize/2:PacketSize;
  213. for (int i=0; i<newsize; ++i)
  214. ref[i] = 0;
  215. for (int i=0; i<PacketSize; ++i)
  216. ref[i%newsize] += data1[i];
  217. internal::pstore(data2, internal::predux_downto4(internal::pload<Packet>(data1)));
  218. VERIFY(areApprox(ref, data2, newsize) && "internal::predux_downto4");
  219. }
  220. ref[0] = 1;
  221. for (int i=0; i<PacketSize; ++i)
  222. ref[0] *= data1[i];
  223. VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
  224. for (int j=0; j<PacketSize; ++j)
  225. {
  226. ref[j] = 0;
  227. for (int i=0; i<PacketSize; ++i)
  228. ref[j] += data1[i+j*PacketSize];
  229. packets[j] = internal::pload<Packet>(data1+j*PacketSize);
  230. }
  231. internal::pstore(data2, internal::preduxp(packets));
  232. VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp");
  233. for (int i=0; i<PacketSize; ++i)
  234. ref[i] = data1[PacketSize-i-1];
  235. internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
  236. VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse");
  237. internal::PacketBlock<Packet> kernel;
  238. for (int i=0; i<PacketSize; ++i) {
  239. kernel.packet[i] = internal::pload<Packet>(data1+i*PacketSize);
  240. }
  241. ptranspose(kernel);
  242. for (int i=0; i<PacketSize; ++i) {
  243. internal::pstore(data2, kernel.packet[i]);
  244. for (int j = 0; j < PacketSize; ++j) {
  245. VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose");
  246. }
  247. }
  248. if (PacketTraits::HasBlend) {
  249. Packet thenPacket = internal::pload<Packet>(data1);
  250. Packet elsePacket = internal::pload<Packet>(data2);
  251. EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector;
  252. for (int i = 0; i < PacketSize; ++i) {
  253. selector.select[i] = i;
  254. }
  255. Packet blend = internal::pblend(selector, thenPacket, elsePacket);
  256. EIGEN_ALIGN_MAX Scalar result[size];
  257. internal::pstore(result, blend);
  258. for (int i = 0; i < PacketSize; ++i) {
  259. VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
  260. }
  261. }
  262. if (PacketTraits::HasBlend) {
  263. // pinsertfirst
  264. for (int i=0; i<PacketSize; ++i)
  265. ref[i] = data1[i];
  266. Scalar s = internal::random<Scalar>();
  267. ref[0] = s;
  268. internal::pstore(data2, internal::pinsertfirst(internal::pload<Packet>(data1),s));
  269. VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst");
  270. }
  271. if (PacketTraits::HasBlend) {
  272. // pinsertlast
  273. for (int i=0; i<PacketSize; ++i)
  274. ref[i] = data1[i];
  275. Scalar s = internal::random<Scalar>();
  276. ref[PacketSize-1] = s;
  277. internal::pstore(data2, internal::pinsertlast(internal::pload<Packet>(data1),s));
  278. VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast");
  279. }
  280. }
  281. template<typename Scalar> void packetmath_real()
  282. {
  283. using std::abs;
  284. typedef internal::packet_traits<Scalar> PacketTraits;
  285. typedef typename PacketTraits::type Packet;
  286. const int PacketSize = PacketTraits::size;
  287. const int size = PacketSize*4;
  288. EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4];
  289. EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4];
  290. EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4];
  291. for (int i=0; i<size; ++i)
  292. {
  293. data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3));
  294. data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3));
  295. }
  296. CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin);
  297. CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
  298. CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
  299. CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
  300. CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
  301. CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
  302. for (int i=0; i<size; ++i)
  303. {
  304. data1[i] = internal::random<Scalar>(-1,1);
  305. data2[i] = internal::random<Scalar>(-1,1);
  306. }
  307. CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
  308. CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
  309. for (int i=0; i<size; ++i)
  310. {
  311. data1[i] = internal::random<Scalar>(-87,88);
  312. data2[i] = internal::random<Scalar>(-87,88);
  313. }
  314. CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
  315. for (int i=0; i<size; ++i)
  316. {
  317. data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
  318. data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
  319. }
  320. CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
  321. if(PacketTraits::HasExp && PacketTraits::size>=2)
  322. {
  323. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  324. data1[1] = std::numeric_limits<Scalar>::epsilon();
  325. packet_helper<PacketTraits::HasExp,Packet> h;
  326. h.store(data2, internal::pexp(h.load(data1)));
  327. VERIFY((numext::isnan)(data2[0]));
  328. VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]);
  329. data1[0] = -std::numeric_limits<Scalar>::epsilon();
  330. data1[1] = 0;
  331. h.store(data2, internal::pexp(h.load(data1)));
  332. VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::epsilon()), data2[0]);
  333. VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
  334. data1[0] = (std::numeric_limits<Scalar>::min)();
  335. data1[1] = -(std::numeric_limits<Scalar>::min)();
  336. h.store(data2, internal::pexp(h.load(data1)));
  337. VERIFY_IS_EQUAL(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]);
  338. VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
  339. data1[0] = std::numeric_limits<Scalar>::denorm_min();
  340. data1[1] = -std::numeric_limits<Scalar>::denorm_min();
  341. h.store(data2, internal::pexp(h.load(data1)));
  342. VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
  343. VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]);
  344. }
  345. if (PacketTraits::HasTanh) {
  346. // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
  347. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  348. packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h;
  349. h.store(data2, internal::ptanh(h.load(data1)));
  350. VERIFY((numext::isnan)(data2[0]));
  351. }
  352. #if EIGEN_HAS_C99_MATH
  353. {
  354. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  355. packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h;
  356. h.store(data2, internal::plgamma(h.load(data1)));
  357. VERIFY((numext::isnan)(data2[0]));
  358. }
  359. {
  360. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  361. packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h;
  362. h.store(data2, internal::perf(h.load(data1)));
  363. VERIFY((numext::isnan)(data2[0]));
  364. }
  365. {
  366. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  367. packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h;
  368. h.store(data2, internal::perfc(h.load(data1)));
  369. VERIFY((numext::isnan)(data2[0]));
  370. }
  371. #endif // EIGEN_HAS_C99_MATH
  372. for (int i=0; i<size; ++i)
  373. {
  374. data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
  375. data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
  376. }
  377. if(internal::random<float>(0,1)<0.1f)
  378. data1[internal::random<int>(0, PacketSize)] = 0;
  379. CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt);
  380. CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
  381. #if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L)
  382. CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
  383. CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma);
  384. CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf);
  385. CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
  386. #endif
  387. if(PacketTraits::HasLog && PacketTraits::size>=2)
  388. {
  389. data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
  390. data1[1] = std::numeric_limits<Scalar>::epsilon();
  391. packet_helper<PacketTraits::HasLog,Packet> h;
  392. h.store(data2, internal::plog(h.load(data1)));
  393. VERIFY((numext::isnan)(data2[0]));
  394. VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]);
  395. data1[0] = -std::numeric_limits<Scalar>::epsilon();
  396. data1[1] = 0;
  397. h.store(data2, internal::plog(h.load(data1)));
  398. VERIFY((numext::isnan)(data2[0]));
  399. VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
  400. data1[0] = (std::numeric_limits<Scalar>::min)();
  401. data1[1] = -(std::numeric_limits<Scalar>::min)();
  402. h.store(data2, internal::plog(h.load(data1)));
  403. VERIFY_IS_EQUAL(std::log((std::numeric_limits<Scalar>::min)()), data2[0]);
  404. VERIFY((numext::isnan)(data2[1]));
  405. data1[0] = std::numeric_limits<Scalar>::denorm_min();
  406. data1[1] = -std::numeric_limits<Scalar>::denorm_min();
  407. h.store(data2, internal::plog(h.load(data1)));
  408. // VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
  409. VERIFY((numext::isnan)(data2[1]));
  410. data1[0] = Scalar(-1.0f);
  411. h.store(data2, internal::plog(h.load(data1)));
  412. VERIFY((numext::isnan)(data2[0]));
  413. h.store(data2, internal::psqrt(h.load(data1)));
  414. VERIFY((numext::isnan)(data2[0]));
  415. VERIFY((numext::isnan)(data2[1]));
  416. }
  417. }
  418. template<typename Scalar> void packetmath_notcomplex()
  419. {
  420. using std::abs;
  421. typedef internal::packet_traits<Scalar> PacketTraits;
  422. typedef typename PacketTraits::type Packet;
  423. const int PacketSize = PacketTraits::size;
  424. EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4];
  425. EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4];
  426. EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4];
  427. Array<Scalar,Dynamic,1>::Map(data1, PacketTraits::size*4).setRandom();
  428. ref[0] = data1[0];
  429. for (int i=0; i<PacketSize; ++i)
  430. ref[0] = (std::min)(ref[0],data1[i]);
  431. VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
  432. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
  433. VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
  434. CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin);
  435. CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax);
  436. CHECK_CWISE1(abs, internal::pabs);
  437. ref[0] = data1[0];
  438. for (int i=0; i<PacketSize; ++i)
  439. ref[0] = (std::max)(ref[0],data1[i]);
  440. VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
  441. for (int i=0; i<PacketSize; ++i)
  442. ref[i] = data1[0]+Scalar(i);
  443. internal::pstore(data2, internal::plset<Packet>(data1[0]));
  444. VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset");
  445. }
  446. template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval)
  447. {
  448. typedef internal::packet_traits<Scalar> PacketTraits;
  449. typedef typename PacketTraits::type Packet;
  450. const int PacketSize = PacketTraits::size;
  451. internal::conj_if<ConjLhs> cj0;
  452. internal::conj_if<ConjRhs> cj1;
  453. internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj;
  454. internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj;
  455. for(int i=0;i<PacketSize;++i)
  456. {
  457. ref[i] = cj0(data1[i]) * cj1(data2[i]);
  458. VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul");
  459. }
  460. internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2)));
  461. VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul");
  462. for(int i=0;i<PacketSize;++i)
  463. {
  464. Scalar tmp = ref[i];
  465. ref[i] += cj0(data1[i]) * cj1(data2[i]);
  466. VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd");
  467. }
  468. internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval)));
  469. VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
  470. }
  471. template<typename Scalar> void packetmath_complex()
  472. {
  473. typedef internal::packet_traits<Scalar> PacketTraits;
  474. typedef typename PacketTraits::type Packet;
  475. const int PacketSize = PacketTraits::size;
  476. const int size = PacketSize*4;
  477. EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
  478. EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
  479. EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
  480. EIGEN_ALIGN_MAX Scalar pval[PacketSize*4];
  481. for (int i=0; i<size; ++i)
  482. {
  483. data1[i] = internal::random<Scalar>() * Scalar(1e2);
  484. data2[i] = internal::random<Scalar>() * Scalar(1e2);
  485. }
  486. test_conj_helper<Scalar,false,false> (data1,data2,ref,pval);
  487. test_conj_helper<Scalar,false,true> (data1,data2,ref,pval);
  488. test_conj_helper<Scalar,true,false> (data1,data2,ref,pval);
  489. test_conj_helper<Scalar,true,true> (data1,data2,ref,pval);
  490. {
  491. for(int i=0;i<PacketSize;++i)
  492. ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i]));
  493. internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1)));
  494. VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip");
  495. }
  496. }
  497. template<typename Scalar> void packetmath_scatter_gather()
  498. {
  499. typedef internal::packet_traits<Scalar> PacketTraits;
  500. typedef typename PacketTraits::type Packet;
  501. typedef typename NumTraits<Scalar>::Real RealScalar;
  502. const int PacketSize = PacketTraits::size;
  503. EIGEN_ALIGN_MAX Scalar data1[PacketSize];
  504. RealScalar refvalue = 0;
  505. for (int i=0; i<PacketSize; ++i) {
  506. data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
  507. }
  508. int stride = internal::random<int>(1,20);
  509. EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20];
  510. memset(buffer, 0, 20*PacketSize*sizeof(Scalar));
  511. Packet packet = internal::pload<Packet>(data1);
  512. internal::pscatter<Scalar, Packet>(buffer, packet, stride);
  513. for (int i = 0; i < PacketSize*20; ++i) {
  514. if ((i%stride) == 0 && i<stride*PacketSize) {
  515. VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter");
  516. } else {
  517. VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
  518. }
  519. }
  520. for (int i=0; i<PacketSize*7; ++i) {
  521. buffer[i] = internal::random<Scalar>()/RealScalar(PacketSize);
  522. }
  523. packet = internal::pgather<Scalar, Packet>(buffer, 7);
  524. internal::pstore(data1, packet);
  525. for (int i = 0; i < PacketSize; ++i) {
  526. VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather");
  527. }
  528. }
  529. void test_packetmath()
  530. {
  531. for(int i = 0; i < g_repeat; i++) {
  532. CALL_SUBTEST_1( packetmath<float>() );
  533. CALL_SUBTEST_2( packetmath<double>() );
  534. CALL_SUBTEST_3( packetmath<int>() );
  535. CALL_SUBTEST_4( packetmath<std::complex<float> >() );
  536. CALL_SUBTEST_5( packetmath<std::complex<double> >() );
  537. CALL_SUBTEST_1( packetmath_notcomplex<float>() );
  538. CALL_SUBTEST_2( packetmath_notcomplex<double>() );
  539. CALL_SUBTEST_3( packetmath_notcomplex<int>() );
  540. CALL_SUBTEST_1( packetmath_real<float>() );
  541. CALL_SUBTEST_2( packetmath_real<double>() );
  542. CALL_SUBTEST_4( packetmath_complex<std::complex<float> >() );
  543. CALL_SUBTEST_5( packetmath_complex<std::complex<double> >() );
  544. CALL_SUBTEST_1( packetmath_scatter_gather<float>() );
  545. CALL_SUBTEST_2( packetmath_scatter_gather<double>() );
  546. CALL_SUBTEST_3( packetmath_scatter_gather<int>() );
  547. CALL_SUBTEST_4( packetmath_scatter_gather<std::complex<float> >() );
  548. CALL_SUBTEST_5( packetmath_scatter_gather<std::complex<double> >() );
  549. }
  550. }