sparse_vector.cpp 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "sparse.h"
  10. template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols)
  11. {
  12. double densityMat = (std::max)(8./(rows*cols), 0.01);
  13. double densityVec = (std::max)(8./(rows), 0.1);
  14. typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  15. typedef Matrix<Scalar,Dynamic,1> DenseVector;
  16. typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType;
  17. typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType;
  18. Scalar eps = 1e-6;
  19. SparseMatrixType m1(rows,rows);
  20. SparseVectorType v1(rows), v2(rows), v3(rows);
  21. DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
  22. DenseVector refV1 = DenseVector::Random(rows),
  23. refV2 = DenseVector::Random(rows),
  24. refV3 = DenseVector::Random(rows);
  25. std::vector<int> zerocoords, nonzerocoords;
  26. initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
  27. initSparse<Scalar>(densityMat, refM1, m1);
  28. initSparse<Scalar>(densityVec, refV2, v2);
  29. initSparse<Scalar>(densityVec, refV3, v3);
  30. Scalar s1 = internal::random<Scalar>();
  31. // test coeff and coeffRef
  32. for (unsigned int i=0; i<zerocoords.size(); ++i)
  33. {
  34. VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
  35. //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
  36. }
  37. {
  38. VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
  39. int j=0;
  40. for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
  41. {
  42. VERIFY(nonzerocoords[j]==it.index());
  43. VERIFY(it.value()==v1.coeff(it.index()));
  44. VERIFY(it.value()==refV1.coeff(it.index()));
  45. }
  46. }
  47. VERIFY_IS_APPROX(v1, refV1);
  48. // test coeffRef with reallocation
  49. {
  50. SparseVectorType v4(rows);
  51. DenseVector v5 = DenseVector::Zero(rows);
  52. for(int k=0; k<rows; ++k)
  53. {
  54. int i = internal::random<int>(0,rows-1);
  55. Scalar v = internal::random<Scalar>();
  56. v4.coeffRef(i) += v;
  57. v5.coeffRef(i) += v;
  58. }
  59. VERIFY_IS_APPROX(v4,v5);
  60. }
  61. v1.coeffRef(nonzerocoords[0]) = Scalar(5);
  62. refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
  63. VERIFY_IS_APPROX(v1, refV1);
  64. VERIFY_IS_APPROX(v1+v2, refV1+refV2);
  65. VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
  66. VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
  67. VERIFY_IS_APPROX(v1*=s1, refV1*=s1);
  68. VERIFY_IS_APPROX(v1/=s1, refV1/=s1);
  69. VERIFY_IS_APPROX(v1+=v2, refV1+=refV2);
  70. VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);
  71. VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
  72. VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
  73. VERIFY_IS_APPROX(m1*v2, refM1*refV2);
  74. VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
  75. {
  76. int i = internal::random<int>(0,rows-1);
  77. VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
  78. }
  79. VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
  80. VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());
  81. // test aliasing
  82. VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
  83. VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
  84. VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
  85. // sparse matrix to sparse vector
  86. SparseMatrixType mv1;
  87. VERIFY_IS_APPROX((mv1=v1),v1);
  88. VERIFY_IS_APPROX(mv1,(v1=mv1));
  89. VERIFY_IS_APPROX(mv1,(v1=mv1.transpose()));
  90. // check copy to dense vector with transpose
  91. refV3.resize(0);
  92. VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense());
  93. VERIFY_IS_APPROX(DenseVector(v1),v1.toDense());
  94. // test conservative resize
  95. {
  96. std::vector<StorageIndex> inc;
  97. if(rows > 3)
  98. inc.push_back(-3);
  99. inc.push_back(0);
  100. inc.push_back(3);
  101. inc.push_back(1);
  102. inc.push_back(10);
  103. for(std::size_t i = 0; i< inc.size(); i++) {
  104. StorageIndex incRows = inc[i];
  105. SparseVectorType vec1(rows);
  106. DenseVector refVec1 = DenseVector::Zero(rows);
  107. initSparse<Scalar>(densityVec, refVec1, vec1);
  108. vec1.conservativeResize(rows+incRows);
  109. refVec1.conservativeResize(rows+incRows);
  110. if (incRows > 0) refVec1.tail(incRows).setZero();
  111. VERIFY_IS_APPROX(vec1, refVec1);
  112. // Insert new values
  113. if (incRows > 0)
  114. vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1;
  115. VERIFY_IS_APPROX(vec1, refVec1);
  116. }
  117. }
  118. }
  119. void test_sparse_vector()
  120. {
  121. for(int i = 0; i < g_repeat; i++) {
  122. int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500);
  123. if(Eigen::internal::random<int>(0,4) == 0) {
  124. r = c; // check square matrices in 25% of tries
  125. }
  126. EIGEN_UNUSED_VARIABLE(r+c);
  127. CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
  128. CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) ));
  129. CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) ));
  130. CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) ));
  131. }
  132. }