stable_norm.cpp 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
  11. {
  12. return x;
  13. }
  14. template<typename MatrixType> void stable_norm(const MatrixType& m)
  15. {
  16. /* this test covers the following files:
  17. StableNorm.h
  18. */
  19. using std::sqrt;
  20. using std::abs;
  21. typedef typename MatrixType::Scalar Scalar;
  22. typedef typename NumTraits<Scalar>::Real RealScalar;
  23. bool complex_real_product_ok = true;
  24. // Check the basic machine-dependent constants.
  25. {
  26. int ibeta, it, iemin, iemax;
  27. ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
  28. it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
  29. iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
  30. iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
  31. VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
  32. && "the stable norm algorithm cannot be guaranteed on this computer");
  33. Scalar inf = std::numeric_limits<RealScalar>::infinity();
  34. if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) )
  35. {
  36. complex_real_product_ok = false;
  37. static bool first = true;
  38. if(first)
  39. std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl;
  40. first = false;
  41. }
  42. }
  43. Index rows = m.rows();
  44. Index cols = m.cols();
  45. // get a non-zero random factor
  46. Scalar factor = internal::random<Scalar>();
  47. while(numext::abs2(factor)<RealScalar(1e-4))
  48. factor = internal::random<Scalar>();
  49. Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
  50. factor = internal::random<Scalar>();
  51. while(numext::abs2(factor)<RealScalar(1e-4))
  52. factor = internal::random<Scalar>();
  53. Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
  54. Scalar one(1);
  55. MatrixType vzero = MatrixType::Zero(rows, cols),
  56. vrand = MatrixType::Random(rows, cols),
  57. vbig(rows, cols),
  58. vsmall(rows,cols);
  59. vbig.fill(big);
  60. vsmall.fill(small);
  61. VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
  62. VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm());
  63. VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm());
  64. VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
  65. // test with expressions as input
  66. VERIFY_IS_APPROX((one*vrand).stableNorm(), vrand.norm());
  67. VERIFY_IS_APPROX((one*vrand).blueNorm(), vrand.norm());
  68. VERIFY_IS_APPROX((one*vrand).hypotNorm(), vrand.norm());
  69. VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).stableNorm(), vrand.norm());
  70. VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).blueNorm(), vrand.norm());
  71. VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).hypotNorm(), vrand.norm());
  72. RealScalar size = static_cast<RealScalar>(m.size());
  73. // test numext::isfinite
  74. VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity()));
  75. VERIFY(!(numext::isfinite)(sqrt(-abs(big))));
  76. // test overflow
  77. VERIFY((numext::isfinite)(sqrt(size)*abs(big)));
  78. VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
  79. VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
  80. VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big));
  81. VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big));
  82. // test underflow
  83. VERIFY((numext::isfinite)(sqrt(size)*abs(small)));
  84. VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail
  85. VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
  86. VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small));
  87. VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small));
  88. // Test compilation of cwise() version
  89. VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm());
  90. VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm());
  91. VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm());
  92. VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
  93. VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
  94. VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
  95. // test NaN, +inf, -inf
  96. MatrixType v;
  97. Index i = internal::random<Index>(0,rows-1);
  98. Index j = internal::random<Index>(0,cols-1);
  99. // NaN
  100. {
  101. v = vrand;
  102. v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN();
  103. VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
  104. VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
  105. VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
  106. VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
  107. VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
  108. }
  109. // +inf
  110. {
  111. v = vrand;
  112. v(i,j) = std::numeric_limits<RealScalar>::infinity();
  113. VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
  114. VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
  115. VERIFY(!(numext::isfinite)(v.stableNorm()));
  116. if(complex_real_product_ok){
  117. VERIFY(isPlusInf(v.stableNorm()));
  118. }
  119. VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
  120. VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
  121. }
  122. // -inf
  123. {
  124. v = vrand;
  125. v(i,j) = -std::numeric_limits<RealScalar>::infinity();
  126. VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
  127. VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
  128. VERIFY(!(numext::isfinite)(v.stableNorm()));
  129. if(complex_real_product_ok) {
  130. VERIFY(isPlusInf(v.stableNorm()));
  131. }
  132. VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
  133. VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
  134. }
  135. // mix
  136. {
  137. Index i2 = internal::random<Index>(0,rows-1);
  138. Index j2 = internal::random<Index>(0,cols-1);
  139. v = vrand;
  140. v(i,j) = -std::numeric_limits<RealScalar>::infinity();
  141. v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
  142. VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
  143. VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
  144. VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
  145. VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
  146. VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
  147. }
  148. // stableNormalize[d]
  149. {
  150. VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized());
  151. MatrixType vcopy(vrand);
  152. vcopy.stableNormalize();
  153. VERIFY_IS_APPROX(vcopy, vrand.normalized());
  154. VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1));
  155. VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1));
  156. VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1));
  157. VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1));
  158. RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
  159. VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling);
  160. VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized());
  161. }
  162. }
  163. void test_stable_norm()
  164. {
  165. for(int i = 0; i < g_repeat; i++) {
  166. CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
  167. CALL_SUBTEST_2( stable_norm(Vector4d()) );
  168. CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
  169. CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
  170. CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
  171. }
  172. }