subdivision.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402
  1. /*************************************/
  2. /* Auteur : Rémi Synave */
  3. /* Date de création : 01/03/07 */
  4. /* Date de modification : 15/03/15 */
  5. /* Version : 0.4 */
  6. /*************************************/
  7. /***************************************************************************/
  8. /* This file is part of a2ri. */
  9. /* */
  10. /* a2ri is free software: you can redistribute it and/or modify it */
  11. /* under the terms of the GNU Lesser General Public License as published */
  12. /* by the Free Software Foundation, either version 3 of the License, or */
  13. /* (at your option) any later version. */
  14. /* */
  15. /* a2ri is distributed in the hope that it will be useful, */
  16. /* but WITHOUT ANY WARRANTY; without even the implied warranty of */
  17. /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
  18. /* GNU Lesser General Public License for more details. */
  19. /* */
  20. /* You should have received a copy of the GNU Lesser General Public */
  21. /* License along with a2ri. */
  22. /* If not, see <http://www.gnu.org/licenses/>. */
  23. /***************************************************************************/
  24. #include "subdivision.h"
  25. /********** INTERMEDIATE TYPES AND FUNCTIONS **********/
  26. /* Les fonctions intermédiaires sont préfixées de IF */
  27. /* et les types intermédiaires de IT */
  28. typedef struct
  29. {
  30. vf_model *m;
  31. vf_vertex *nvpt;
  32. int att_int;
  33. } ITargument_hashtable;
  34. typedef struct
  35. {
  36. vf_model *m;
  37. int *indexar;
  38. point3d * A,
  39. * B,
  40. * C;
  41. } ITparam_decoup;
  42. void
  43. IFedge_cut (
  44. int key,
  45. vf_edge * value,
  46. void *user_data)
  47. {
  48. point3d p1,
  49. p2;
  50. double t;
  51. ITparam_decoup *arg = user_data;
  52. int *indexarete = arg->indexar;
  53. vf_model *m = arg->m;
  54. point3d * A = arg->A,
  55. * B = arg->B,
  56. * C = arg->C;
  57. p1.x = m->ve[value->ve1].x;
  58. p1.y = m->ve[value->ve1].y;
  59. p1.z = m->ve[value->ve1].z;
  60. p2.x = m->ve[value->ve2].x;
  61. p2.y = m->ve[value->ve2].y;
  62. p2.z = m->ve[value->ve2].z;
  63. if (intersection_droite_plan (&p1, &p2, A, B, C, &t) && !egalite (t, 0)
  64. && !egalite (t, 1) && t>0 && t<1)
  65. {
  66. value->att_int = indexarete[0];
  67. indexarete[0] = indexarete[0] + 1;
  68. value->att_double = t;
  69. }
  70. else
  71. {
  72. value->att_int = -1;
  73. value->att_double = -1;
  74. }
  75. }
  76. void
  77. IFcenter_cut (
  78. int key,
  79. vf_edge * value,
  80. void *user_data)
  81. {
  82. ITargument_hashtable *c = user_data;
  83. vf_model *m = c->m;
  84. vf_vertex *nvpt = c->nvpt;
  85. //on affecte le numero du point milieu
  86. value->att_int = m->nbvertex;
  87. //on ajoute le nouveau point comme point incident aux points p1 et p2
  88. list_int_add (&(nvpt[value->ve1].incidentvertices),
  89. &(nvpt[value->ve1].nbincidentvertices), m->nbvertex,
  90. WITH_REDUNDANCE);
  91. list_int_add (&(nvpt[value->ve2].incidentvertices),
  92. &(nvpt[value->ve2].nbincidentvertices), m->nbvertex,
  93. WITH_REDUNDANCE);
  94. //on ajoute p1 et p2 à la liste des points incidents au nouveau point
  95. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  96. &(nvpt[m->nbvertex].nbincidentvertices), value->ve1,
  97. WITH_REDUNDANCE);
  98. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  99. &(nvpt[m->nbvertex].nbincidentvertices), value->ve2,
  100. WITH_REDUNDANCE);
  101. //on calcule les coordonnées temporaires du nouveau point
  102. double x = (m->ve[value->ve1].x + m->ve[value->ve2].x) / 2.0;
  103. double y = (m->ve[value->ve1].y + m->ve[value->ve2].y) / 2.0;
  104. double z = (m->ve[value->ve1].z + m->ve[value->ve2].z) / 2.0;
  105. //on ajoute le nouveau point. m->nbvertex sera incrémenté automatiquement
  106. a2ri_vf_add_vertex (m, x, y, z);
  107. }
  108. void
  109. IFreplace_nvpt (
  110. int key,
  111. vf_edge * value,
  112. void *user_data)
  113. {
  114. ITargument_hashtable *c = user_data;
  115. vf_model *m = c->m;
  116. vf_vertex *nvpt = c->nvpt;
  117. int ptmilieu = value->att_int;
  118. if (value->nbsharedfaces == 1)
  119. {
  120. //cas d'une arete sur un bord
  121. //calcul des nouvelles coordonnées
  122. double x = 0.5 * (m->ve[value->ve1].x + m->ve[value->ve2].x);
  123. double y = 0.5 * (m->ve[value->ve1].y + m->ve[value->ve2].y);
  124. double z = 0.5 * (m->ve[value->ve1].z + m->ve[value->ve2].z);
  125. //placement des coordonnées dans le tableau des nouveaux points
  126. nvpt[ptmilieu].x = x;
  127. nvpt[ptmilieu].y = y;
  128. nvpt[ptmilieu].z = z;
  129. //mis à jour de la bounding box
  130. if (m->xmin > x)
  131. m->xmin = x;
  132. if (m->xmax < x)
  133. m->xmax = x;
  134. if (m->ymin > y)
  135. m->ymin = y;
  136. if (m->ymax < y)
  137. m->ymax = y;
  138. if (m->zmin > z)
  139. m->zmin = z;
  140. if (m->zmax < z)
  141. m->zmax = z;
  142. }
  143. else
  144. {
  145. //cas d'un point intérieur
  146. int f1 = value->sharedfaces[0];
  147. int f2 = value->sharedfaces[1];
  148. int p3,
  149. p4;
  150. //p3 et p4 sont les deux sommets appartenant aux deux faces partagées par l'arete mais n'étant pas sur l'arete
  151. p3 = m->fa[f1].ve1;
  152. if (p3 == value->ve1 || p3 == value->ve2)
  153. p3 = m->fa[f1].ve2;
  154. if (p3 == value->ve1 || p3 == value->ve2)
  155. p3 = m->fa[f1].ve3;
  156. p4 = m->fa[f2].ve1;
  157. if (p4 == value->ve1 || p4 == value->ve2)
  158. p4 = m->fa[f2].ve2;
  159. if (p4 == value->ve1 || p4 == value->ve2)
  160. p4 = m->fa[f2].ve3;
  161. //calcul des nouvelles coordonnées
  162. double x =
  163. (3.0 / 8.0) * (m->ve[value->ve1].x + m->ve[value->ve2].x) +
  164. (1.0 / 8.0) * (m->ve[p3].x + m->ve[p4].x);
  165. double y =
  166. (3.0 / 8.0) * (m->ve[value->ve1].y + m->ve[value->ve2].y) +
  167. (1.0 / 8.0) * (m->ve[p3].y + m->ve[p4].y);
  168. double z =
  169. (3.0 / 8.0) * (m->ve[value->ve1].z + m->ve[value->ve2].z) +
  170. (1.0 / 8.0) * (m->ve[p3].z + m->ve[p4].z);
  171. //placement des coordonnées dans le tableau des nouveaux points
  172. nvpt[ptmilieu].x = x;
  173. nvpt[ptmilieu].y = y;
  174. nvpt[ptmilieu].z = z;
  175. //mis à jour de la bounding box
  176. if (m->xmin > x)
  177. m->xmin = x;
  178. if (m->xmax < x)
  179. m->xmax = x;
  180. if (m->ymin > y)
  181. m->ymin = y;
  182. if (m->ymax < y)
  183. m->ymax = y;
  184. if (m->zmin > z)
  185. m->zmin = z;
  186. if (m->zmax < z)
  187. m->zmax = z;
  188. }
  189. }
  190. void
  191. IFcount_subdivided_edge (
  192. int key,
  193. vf_edge * value,
  194. void *user_data)
  195. {
  196. ITargument_hashtable *c = user_data;
  197. if (value->att_int != -1)
  198. c->att_int = (c->att_int) + 1;
  199. }
  200. void
  201. IFvef_but_recherche_p1_p2 (
  202. vef_model * m,
  203. int numedge,
  204. int *p1,
  205. int *p2)
  206. {
  207. *p1 = m->ed[numedge].ve1;
  208. *p2 = m->ed[numedge].ve2;
  209. }
  210. void
  211. IFvef_but_recherche_p3_p4 (
  212. vef_model * m,
  213. int numedge,
  214. int *p3,
  215. int *p4,
  216. int *artemp1,
  217. int *artemp2,
  218. int *artemp3,
  219. int *artemp4)
  220. {
  221. int f1 = -1;
  222. int f2 = -1;
  223. for (int i = 0; i < m->nbface; i++)
  224. {
  225. if (vef_face_contains (&(m->fa[i]), numedge))
  226. {
  227. if (f1 == -1)
  228. f1 = i;
  229. else
  230. f2 = i;
  231. }
  232. }
  233. if (f1 == -1)
  234. {
  235. *p3 = -1;
  236. *p4 = -1;
  237. *artemp1 = -1;
  238. *artemp2 = -1;
  239. *artemp3 = -1;
  240. *artemp4 = -1;
  241. return;
  242. }
  243. int ar1 = m->fa[f1].ed1;
  244. int ar2 = m->fa[f1].ed2;
  245. int ar3 = m->fa[f1].ed3;
  246. if (ar1 == numedge)
  247. ar1 = ar3;
  248. if (ar2 == numedge)
  249. ar2 = ar3;
  250. *artemp1 = ar1;
  251. *artemp2 = ar2;
  252. if (m->ed[ar1].ve1 == m->ed[ar2].ve1 || m->ed[ar1].ve1 == m->ed[ar2].ve2)
  253. *p3 = m->ed[ar1].ve1;
  254. else
  255. *p3 = m->ed[ar1].ve2;
  256. if (f2 == -1)
  257. {
  258. *p4 = -1;
  259. *artemp3 = -1;
  260. *artemp4 = -1;
  261. return;
  262. }
  263. ar1 = m->fa[f2].ed1;
  264. ar2 = m->fa[f2].ed2;
  265. ar3 = m->fa[f2].ed3;
  266. if (ar1 == numedge)
  267. ar1 = ar3;
  268. if (ar2 == numedge)
  269. ar2 = ar3;
  270. *artemp3 = ar1;
  271. *artemp4 = ar2;
  272. if (m->ed[ar1].ve1 == m->ed[ar2].ve1 || m->ed[ar1].ve1 == m->ed[ar2].ve2)
  273. *p4 = m->ed[ar1].ve1;
  274. else
  275. *p4 = m->ed[ar1].ve2;
  276. }
  277. void
  278. IFvef_but_recherche_p5_p6_p7_p8 (
  279. vef_model * m,
  280. int artemp1,
  281. int artemp2,
  282. int artemp3,
  283. int artemp4,
  284. int *p5,
  285. int *p6,
  286. int *p7,
  287. int *p8)
  288. {
  289. int f = -1;
  290. int index = -1;
  291. int p1temp,
  292. p2temp,
  293. p3temp;
  294. while (f == -1 && index < (m->nbface - 1))
  295. {
  296. index++;
  297. if (vef_face_contains (&(m->fa[index]), artemp1)
  298. && !vef_face_contains (&(m->fa[index]), artemp2))
  299. f = index;
  300. }
  301. if (f == -1)
  302. {
  303. *p5 = -1;
  304. }
  305. else
  306. {
  307. p1temp = m->fa[f].ed1;
  308. p2temp = m->fa[f].ed2;
  309. p3temp = m->fa[f].ed3;
  310. if (p1temp == artemp1)
  311. p1temp = p3temp;
  312. if (p2temp == artemp1)
  313. p2temp = p3temp;
  314. if (m->ed[p1temp].ve1 == m->ed[p2temp].ve1
  315. || m->ed[p1temp].ve1 == m->ed[p2temp].ve2)
  316. *p5 = m->ed[p1temp].ve1;
  317. else
  318. *p5 = m->ed[p1temp].ve2;
  319. }
  320. f = -1;
  321. index = -1;
  322. while (f == -1 && index < (m->nbface - 1))
  323. {
  324. index++;
  325. if (vef_face_contains (&(m->fa[index]), artemp2)
  326. && !vef_face_contains (&(m->fa[index]), artemp1))
  327. f = index;
  328. }
  329. if (f == -1)
  330. {
  331. *p6 = -1;
  332. }
  333. else
  334. {
  335. p1temp = m->fa[f].ed1;
  336. p2temp = m->fa[f].ed2;
  337. p3temp = m->fa[f].ed3;
  338. if (p1temp == artemp2)
  339. p1temp = p3temp;
  340. if (p2temp == artemp2)
  341. p2temp = p3temp;
  342. if (m->ed[p1temp].ve1 == m->ed[p2temp].ve1
  343. || m->ed[p1temp].ve1 == m->ed[p2temp].ve2)
  344. *p6 = m->ed[p1temp].ve1;
  345. else
  346. *p6 = m->ed[p1temp].ve2;
  347. }
  348. f = -1;
  349. index = -1;
  350. while (f == -1 && index < (m->nbface - 1))
  351. {
  352. index++;
  353. if (vef_face_contains (&(m->fa[index]), artemp3)
  354. && !vef_face_contains (&(m->fa[index]), artemp4))
  355. f = index;
  356. }
  357. if (f == -1)
  358. {
  359. *p7 = -1;
  360. }
  361. else
  362. {
  363. p1temp = m->fa[f].ed1;
  364. p2temp = m->fa[f].ed2;
  365. p3temp = m->fa[f].ed3;
  366. if (p1temp == artemp3)
  367. p1temp = p3temp;
  368. if (p2temp == artemp3)
  369. p2temp = p3temp;
  370. if (m->ed[p1temp].ve1 == m->ed[p2temp].ve1
  371. || m->ed[p1temp].ve1 == m->ed[p2temp].ve2)
  372. *p7 = m->ed[p1temp].ve1;
  373. else
  374. *p7 = m->ed[p1temp].ve2;
  375. }
  376. f = -1;
  377. index = -1;
  378. while (f == -1 && index < (m->nbface - 1))
  379. {
  380. index++;
  381. if (vef_face_contains (&(m->fa[index]), artemp4)
  382. && !vef_face_contains (&(m->fa[index]), artemp3))
  383. f = index;
  384. }
  385. if (f == -1)
  386. {
  387. *p8 = -1;
  388. }
  389. else
  390. {
  391. p1temp = m->fa[f].ed1;
  392. p2temp = m->fa[f].ed2;
  393. p3temp = m->fa[f].ed3;
  394. if (p1temp == artemp4)
  395. p1temp = p3temp;
  396. if (p2temp == artemp4)
  397. p2temp = p3temp;
  398. if (m->ed[p1temp].ve1 == m->ed[p2temp].ve1
  399. || m->ed[p1temp].ve1 == m->ed[p2temp].ve2)
  400. *p8 = m->ed[p1temp].ve1;
  401. else
  402. *p8 = m->ed[p1temp].ve2;
  403. }
  404. }
  405. /********** MAIN FUNCTIONS **********/
  406. /**
  407. Subdivision d'un modèle avec la méthode de Loop
  408. @param m pointeur sur le modèle à subdiviser
  409. @param nbiter nombre d'itération de la subdivision
  410. @return aucun
  411. */
  412. void
  413. a2ri_vf_loop (
  414. vf_model * m,
  415. int nbiter)
  416. {
  417. ITargument_hashtable *arg = (ITargument_hashtable *) malloc (sizeof (ITargument_hashtable));
  418. a2ri_erreur_critique_si (arg == NULL,
  419. "erreur allocation memoire pour arg\na2ri_vf_loop");
  420. for (int i = 0; i < nbiter; i++)
  421. {
  422. int nbpointancien = m->nbvertex;
  423. hashtable *table = a2ri_vf_construction_edge_table (m, NULL, 0);
  424. vf_vertex *nvpt =
  425. (vf_vertex *) malloc ((m->nbvertex + 3 * hashtable_size (table)) *
  426. sizeof (vf_vertex));
  427. a2ri_erreur_critique_si (nvpt == NULL,
  428. "erreur allocation memoire pour nvpt\na2ri_vf_loop");
  429. vf_face *nvfa = (vf_face *) malloc (m->nbface * 4 * sizeof (vf_face));
  430. a2ri_erreur_critique_si (nvfa == NULL,
  431. "erreur allocation memoire pour nvfa\na2ri_vf_loop");
  432. //initialisation du tableau contenant les nouveaux sommets
  433. for (int j = 0; j < m->nbvertex + 3 * ((int) (hashtable_size (table)));
  434. j++)
  435. {
  436. nvpt[j].nbincidentvertices = 0;
  437. nvpt[j].incidentvertices = NULL;
  438. }
  439. //on fait le découpage de toutes les aretes.
  440. arg->m = m;
  441. arg->nvpt = nvpt;
  442. hashtable_foreach (table, IFcenter_cut, arg);
  443. for (int j = 0; j < m->nbface; j++)
  444. {
  445. int ptmilieu1,
  446. ptmilieu2,
  447. ptmilieu3;
  448. vf_edge *e;
  449. //on cherche les 3 aretes de la face en cours ainsi que les points milieux
  450. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve2);
  451. ptmilieu1 = e->att_int;
  452. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve3);
  453. ptmilieu2 = e->att_int;
  454. e = hashtable_look_for (table, m->fa[j].ve2, m->fa[j].ve3);
  455. ptmilieu3 = e->att_int;
  456. //création de la première sous-face
  457. nvfa[j * 4].ve1 = m->fa[j].ve1;
  458. nvfa[j * 4].ve2 = ptmilieu1;
  459. nvfa[j * 4].ve3 = ptmilieu2;
  460. //création de la seconde sous-face
  461. nvfa[(j * 4) + 1].ve1 = ptmilieu1;
  462. nvfa[(j * 4) + 1].ve2 = m->fa[j].ve2;
  463. nvfa[(j * 4) + 1].ve3 = ptmilieu3;
  464. //création de la troisième sous-face
  465. nvfa[(j * 4) + 2].ve1 = m->fa[j].ve3;
  466. nvfa[(j * 4) + 2].ve2 = ptmilieu2;
  467. nvfa[(j * 4) + 2].ve3 = ptmilieu3;
  468. //création de la quatrième sous-face
  469. nvfa[(j * 4) + 3].ve1 = ptmilieu1;
  470. nvfa[(j * 4) + 3].ve2 = ptmilieu3;
  471. nvfa[(j * 4) + 3].ve3 = ptmilieu2;
  472. //on met à jour les liste des points incidents des points milieux
  473. list_int_add (&(nvpt[ptmilieu1].incidentvertices),
  474. &(nvpt[ptmilieu1].nbincidentvertices), ptmilieu2,
  475. WITH_REDUNDANCE);
  476. list_int_add (&(nvpt[ptmilieu1].incidentvertices),
  477. &(nvpt[ptmilieu1].nbincidentvertices), ptmilieu3,
  478. WITH_REDUNDANCE);
  479. list_int_add (&(nvpt[ptmilieu2].incidentvertices),
  480. &(nvpt[ptmilieu2].nbincidentvertices), ptmilieu1,
  481. WITH_REDUNDANCE);
  482. list_int_add (&(nvpt[ptmilieu2].incidentvertices),
  483. &(nvpt[ptmilieu2].nbincidentvertices), ptmilieu3,
  484. WITH_REDUNDANCE);
  485. list_int_add (&(nvpt[ptmilieu3].incidentvertices),
  486. &(nvpt[ptmilieu3].nbincidentvertices), ptmilieu1,
  487. WITH_REDUNDANCE);
  488. list_int_add (&(nvpt[ptmilieu3].incidentvertices),
  489. &(nvpt[ptmilieu3].nbincidentvertices), ptmilieu2,
  490. WITH_REDUNDANCE);
  491. }
  492. //les nouveaux points sont donc créés, placés et les faces dont découpées
  493. //les anciens points sont replacés
  494. for (int j = 0; j < nbpointancien; j++)
  495. {
  496. int bord = 0;
  497. int mpt1 = -1;
  498. int mpt2 = -1;
  499. for (int k = 0; k < m->ve[j].nbincidentvertices; k++)
  500. {
  501. vf_edge *e;
  502. e = hashtable_look_for (table, j, m->ve[j].incidentvertices[k]);
  503. if (e != NULL)
  504. //si le nombre de faces partagés est de une seule
  505. if (e->nbsharedfaces == 1)
  506. {
  507. //on est sur un bord
  508. bord++;
  509. //on recherche les deux points qui serviront à son repositionnement
  510. if (mpt1 == -1)
  511. if (e->ve1 == j)
  512. mpt1 = e->ve2;
  513. else
  514. mpt1 = e->ve1;
  515. else if (e->ve1 == j)
  516. mpt2 = e->ve2;
  517. else
  518. mpt2 = e->ve1;
  519. }
  520. }
  521. if (bord == 0)
  522. {
  523. //si le sommet est intérieur au maillage
  524. double alphan =
  525. (1.0 / 64.0) * (40 -
  526. (3 +
  527. 2 * cos (2 * M_PI /
  528. m->ve[j].nbincidentvertices)) * (3 +
  529. 2 *
  530. cos
  531. (2
  532. *
  533. M_PI
  534. /
  535. m->
  536. ve
  537. [j].
  538. nbincidentvertices)));
  539. double b = alphan / m->ve[j].nbincidentvertices;
  540. double centre = 1.0 - alphan;
  541. double x = centre * m->ve[j].x;
  542. double y = centre * m->ve[j].y;
  543. double z = centre * m->ve[j].z;
  544. for (int k = 0; k < m->ve[j].nbincidentvertices; k++)
  545. {
  546. x += b * m->ve[m->ve[j].incidentvertices[k]].x;
  547. y += b * m->ve[m->ve[j].incidentvertices[k]].y;
  548. z += b * m->ve[m->ve[j].incidentvertices[k]].z;
  549. }
  550. //on place les nouvelles coordonnées dans le tableau des nouveaux points
  551. nvpt[j].x = x;
  552. nvpt[j].y = y;
  553. nvpt[j].z = z;
  554. //on met à jour la bonding box
  555. if (j == 0)
  556. {
  557. m->xmin = x;
  558. m->xmax = x;
  559. m->ymin = y;
  560. m->ymax = y;
  561. m->zmin = z;
  562. m->zmax = z;
  563. }
  564. else
  565. {
  566. if (m->xmin > x)
  567. m->xmin = x;
  568. if (m->xmax < x)
  569. m->xmax = x;
  570. if (m->ymin > y)
  571. m->ymin = y;
  572. if (m->ymax < y)
  573. m->ymax = y;
  574. if (m->zmin > z)
  575. m->zmin = z;
  576. if (m->zmax < z)
  577. m->zmax = z;
  578. }
  579. }
  580. else
  581. {
  582. //dans le cas d'un point situés sur un bord
  583. double x =
  584. (1.0 / 8.0) * (m->ve[mpt1].x + m->ve[mpt2].x) +
  585. (6.0 / 8.0) * m->ve[j].x;
  586. double y =
  587. (1.0 / 8.0) * (m->ve[mpt1].y + m->ve[mpt2].y) +
  588. (6.0 / 8.0) * m->ve[j].y;
  589. double z =
  590. (1.0 / 8.0) * (m->ve[mpt1].z + m->ve[mpt2].z) +
  591. (6.0 / 8.0) * m->ve[j].z;
  592. //les nouvelles coordonnées sont placés dans le tableau des nouveaux points
  593. nvpt[j].x = x;
  594. nvpt[j].y = y;
  595. nvpt[j].z = z;
  596. //on met à jour la bounding box
  597. if (j == 0)
  598. {
  599. m->xmin = x;
  600. m->xmax = x;
  601. m->ymin = y;
  602. m->ymax = y;
  603. m->zmin = z;
  604. m->zmax = z;
  605. }
  606. else
  607. {
  608. if (m->xmin > x)
  609. m->xmin = x;
  610. if (m->xmax < x)
  611. m->xmax = x;
  612. if (m->ymin > y)
  613. m->ymin = y;
  614. if (m->ymax < y)
  615. m->ymax = y;
  616. if (m->zmin > z)
  617. m->zmin = z;
  618. if (m->zmax < z)
  619. m->zmax = z;
  620. }
  621. }
  622. }
  623. arg->m = m;
  624. arg->nvpt = nvpt;
  625. //pour toutes les aretes, les points mileux (points créés pendant la subdivision) sont repsoitionnés
  626. hashtable_foreach (table, IFreplace_nvpt, arg);
  627. //destruction de la table
  628. hashtable_free (table);
  629. free (table);
  630. for (int j = 0; j < m->nbvertex; j++)
  631. vf_vertex_free (&(m->ve[j]));
  632. free (m->ve);
  633. free (m->fa);
  634. //mis à jour du nombre de faces
  635. m->nbface = m->nbface * 4;
  636. //remplacement des tableaux de faces et de sommets
  637. m->fa = nvfa;
  638. m->ve = nvpt;
  639. }
  640. free (arg);
  641. }
  642. /**
  643. Subdivision d'un modele ou coupant les triangles en 6 triangles avec un point central
  644. @param m pointeur sur le modele a subdiviser
  645. @param nbiter nom c'iteration de la subdivision
  646. @param aucun
  647. */
  648. void
  649. a2ri_vf_6_subdivision (
  650. vf_model * m,
  651. int nbiter)
  652. {
  653. ITargument_hashtable *arg = (ITargument_hashtable *) malloc (sizeof (ITargument_hashtable));
  654. a2ri_erreur_critique_si (arg == NULL,
  655. "erreur allocation memoire pour arg\na2ri_vf_6_subdivision");
  656. for (int i = 0; i < nbiter; i++)
  657. {
  658. hashtable *table = a2ri_vf_construction_edge_table (m, NULL, 0);
  659. vf_vertex *nvpt =
  660. (vf_vertex *)
  661. malloc ((m->nbvertex + m->nbface +
  662. 3 * hashtable_size (table)) * sizeof (vf_vertex));
  663. a2ri_erreur_critique_si (nvpt == NULL,
  664. "erreur allocation memoire pour nvpt\na2ri_vf_6_subdivision");
  665. vf_face *nvfa = (vf_face *) malloc (m->nbface * 6 * sizeof (vf_face));
  666. a2ri_erreur_critique_si (nvfa == NULL,
  667. "erreur allocation memoire pour nvfa\na2ri_vf_6_subdivision");
  668. //initialisation du tableau contenant les nouveaux sommets
  669. for (int j = 0;
  670. j <
  671. (m->nbvertex + m->nbface + 3 * ((int) (hashtable_size (table))));
  672. j++)
  673. {
  674. nvpt[j].nbincidentvertices = 0;
  675. nvpt[j].incidentvertices = NULL;
  676. }
  677. //on fait le découpage de toutes les aretes.
  678. arg->m = m;
  679. arg->nvpt = nvpt;
  680. arg->att_int = 0;
  681. hashtable_foreach (table, IFcenter_cut, arg);
  682. for (int j = 0; j < m->nbface; j++)
  683. {
  684. int ptmilieu1,
  685. ptmilieu2,
  686. ptmilieu3;
  687. vf_edge *e;
  688. double x =
  689. (m->ve[m->fa[j].ve1].x + m->ve[m->fa[j].ve2].x +
  690. m->ve[m->fa[j].ve3].x) / 3.0;
  691. double y =
  692. (m->ve[m->fa[j].ve1].y + m->ve[m->fa[j].ve2].y +
  693. m->ve[m->fa[j].ve3].y) / 3.0;
  694. double z =
  695. (m->ve[m->fa[j].ve1].z + m->ve[m->fa[j].ve2].z +
  696. m->ve[m->fa[j].ve3].z) / 3.0;
  697. //on cherche les 3 aretes de la face en cours ainsi que les points milieux
  698. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve2);
  699. ptmilieu1 = e->att_int;
  700. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve3);
  701. ptmilieu2 = e->att_int;
  702. e = hashtable_look_for (table, m->fa[j].ve2, m->fa[j].ve3);
  703. ptmilieu3 = e->att_int;
  704. //création de la première sous-face
  705. nvfa[j * 6].ve1 = m->fa[j].ve1;
  706. nvfa[j * 6].ve2 = ptmilieu1;
  707. nvfa[j * 6].ve3 = m->nbvertex;
  708. //création de la seconde sous-face
  709. nvfa[(j * 6) + 1].ve1 = ptmilieu1;
  710. nvfa[(j * 6) + 1].ve2 = m->fa[j].ve2;
  711. nvfa[(j * 6) + 1].ve3 = m->nbvertex;
  712. //création de la troisième sous-face
  713. nvfa[(j * 6) + 2].ve1 = m->fa[j].ve2;
  714. nvfa[(j * 6) + 2].ve2 = ptmilieu3;
  715. nvfa[(j * 6) + 2].ve3 = m->nbvertex;
  716. //création de la quatrième sous-face
  717. nvfa[(j * 6) + 3].ve1 = ptmilieu3;
  718. nvfa[(j * 6) + 3].ve2 = m->fa[j].ve3;
  719. nvfa[(j * 6) + 3].ve3 = m->nbvertex;
  720. //création de la cinquième sous-face
  721. nvfa[(j * 6) + 4].ve1 = m->fa[j].ve3;
  722. nvfa[(j * 6) + 4].ve2 = ptmilieu2;
  723. nvfa[(j * 6) + 4].ve3 = m->nbvertex;
  724. //création de la sixième sous-face
  725. nvfa[(j * 6) + 5].ve1 = ptmilieu2;
  726. nvfa[(j * 6) + 5].ve2 = m->fa[j].ve1;
  727. nvfa[(j * 6) + 5].ve3 = m->nbvertex;
  728. //on met à jour les liste des points incidents des points milieux
  729. list_int_add (&(nvpt[m->fa[j].ve1].incidentvertices),
  730. &(nvpt[m->fa[j].ve1].nbincidentvertices), m->nbvertex,
  731. WITH_REDUNDANCE);
  732. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  733. &(nvpt[m->nbvertex].nbincidentvertices), m->fa[j].ve1,
  734. WITH_REDUNDANCE);
  735. list_int_add (&(nvpt[m->fa[j].ve2].incidentvertices),
  736. &(nvpt[m->fa[j].ve2].nbincidentvertices), m->nbvertex,
  737. WITH_REDUNDANCE);
  738. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  739. &(nvpt[m->nbvertex].nbincidentvertices), m->fa[j].ve2,
  740. WITH_REDUNDANCE);
  741. list_int_add (&(nvpt[m->fa[j].ve3].incidentvertices),
  742. &(nvpt[m->fa[j].ve3].nbincidentvertices), m->nbvertex,
  743. WITH_REDUNDANCE);
  744. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  745. &(nvpt[m->nbvertex].nbincidentvertices), m->fa[j].ve3,
  746. WITH_REDUNDANCE);
  747. list_int_add (&(nvpt[ptmilieu1].incidentvertices),
  748. &(nvpt[ptmilieu1].nbincidentvertices), m->nbvertex,
  749. WITH_REDUNDANCE);
  750. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  751. &(nvpt[m->nbvertex].nbincidentvertices), ptmilieu1,
  752. WITH_REDUNDANCE);
  753. list_int_add (&(nvpt[ptmilieu2].incidentvertices),
  754. &(nvpt[ptmilieu2].nbincidentvertices), m->nbvertex,
  755. WITH_REDUNDANCE);
  756. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  757. &(nvpt[m->nbvertex].nbincidentvertices), ptmilieu2,
  758. WITH_REDUNDANCE);
  759. list_int_add (&(nvpt[ptmilieu3].incidentvertices),
  760. &(nvpt[ptmilieu3].nbincidentvertices), m->nbvertex,
  761. WITH_REDUNDANCE);
  762. list_int_add (&(nvpt[m->nbvertex].incidentvertices),
  763. &(nvpt[m->nbvertex].nbincidentvertices), ptmilieu3,
  764. WITH_REDUNDANCE);
  765. a2ri_vf_add_vertex (m, x, y, z);
  766. }
  767. for (int i = 0; i < m->nbvertex; i++)
  768. {
  769. nvpt[i].x = m->ve[i].x;
  770. nvpt[i].y = m->ve[i].y;
  771. nvpt[i].z = m->ve[i].z;
  772. }
  773. //destruction de la table
  774. hashtable_free (table);
  775. free (table);
  776. for (int j = 0; j < m->nbvertex; j++)
  777. vf_vertex_free (&(m->ve[j]));
  778. //mis à jour du nombre de faces
  779. m->nbface = m->nbface * 6;
  780. free (m->ve);
  781. free (m->fa);
  782. //remplacement des tableaux de faces et de sommets
  783. m->fa = nvfa;
  784. m->ve = nvpt;
  785. }
  786. free (arg);
  787. }
  788. /**
  789. Subdivision d'un modele ou coupant les triangles en 4 triangles
  790. @param m pointeur sur le modele a subdiviser
  791. @param nbiter nom c'iteration de la subdivision
  792. @param aucun
  793. */
  794. void
  795. a2ri_vf_4_subdivision (
  796. vf_model * m,
  797. int nbiter)
  798. {
  799. ITargument_hashtable *arg = (ITargument_hashtable *) malloc (sizeof (ITargument_hashtable));
  800. a2ri_erreur_critique_si (arg == NULL,
  801. "erreur allocation memoire pour arg\na2ri_vf_4_subdivision");
  802. for (int i = 0; i < nbiter; i++)
  803. {
  804. hashtable *table = a2ri_vf_construction_edge_table (m, NULL, 0);
  805. vf_vertex *nvpt =
  806. (vf_vertex *) malloc ((m->nbvertex + 3 * hashtable_size (table)) *
  807. sizeof (vf_vertex));
  808. a2ri_erreur_critique_si (nvpt == NULL,
  809. "erreur allocation memoire pour nvpt\na2ri_vf_4_subdivision");
  810. vf_face *nvfa = (vf_face *) malloc (m->nbface * 4 * sizeof (vf_face));
  811. a2ri_erreur_critique_si (nvfa == NULL,
  812. "erreur allocation memoire pour nvfa\na2ri_vf_4_subdivision");
  813. //initialisation du tableau contenant les nouveaux sommets
  814. for (int j = 0; j < m->nbvertex + 3 * ((int) (hashtable_size (table)));
  815. j++)
  816. {
  817. nvpt[j].nbincidentvertices = 0;
  818. nvpt[j].incidentvertices = NULL;
  819. }
  820. for (int j = 0; j < m->nbvertex; j++)
  821. {
  822. nvpt[j].x = m->ve[j].x;
  823. nvpt[j].y = m->ve[j].y;
  824. nvpt[j].z = m->ve[j].z;
  825. }
  826. //on fait le découpage de toutes les aretes.
  827. arg->m = m;
  828. arg->nvpt = nvpt;
  829. hashtable_foreach (table, IFcenter_cut, arg);
  830. for (int j = 0; j < m->nbface; j++)
  831. {
  832. int ptmilieu1,
  833. ptmilieu2,
  834. ptmilieu3;
  835. vf_edge *e;
  836. //on cherche les 3 aretes de la face en cours ainsi que les points milieux
  837. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve2);
  838. ptmilieu1 = e->att_int;
  839. nvpt[ptmilieu1].x = (m->ve[e->ve1].x + m->ve[e->ve2].x) / 2.0;
  840. nvpt[ptmilieu1].y = (m->ve[e->ve1].y + m->ve[e->ve2].y) / 2.0;
  841. nvpt[ptmilieu1].z = (m->ve[e->ve1].z + m->ve[e->ve2].z) / 2.0;
  842. e = hashtable_look_for (table, m->fa[j].ve1, m->fa[j].ve3);
  843. ptmilieu2 = e->att_int;
  844. nvpt[ptmilieu2].x = (m->ve[e->ve1].x + m->ve[e->ve2].x) / 2.0;
  845. nvpt[ptmilieu2].y = (m->ve[e->ve1].y + m->ve[e->ve2].y) / 2.0;
  846. nvpt[ptmilieu2].z = (m->ve[e->ve1].z + m->ve[e->ve2].z) / 2.0;
  847. e = hashtable_look_for (table, m->fa[j].ve2, m->fa[j].ve3);
  848. ptmilieu3 = e->att_int;
  849. nvpt[ptmilieu3].x = (m->ve[e->ve1].x + m->ve[e->ve2].x) / 2.0;
  850. nvpt[ptmilieu3].y = (m->ve[e->ve1].y + m->ve[e->ve2].y) / 2.0;
  851. nvpt[ptmilieu3].z = (m->ve[e->ve1].z + m->ve[e->ve2].z) / 2.0;
  852. //création de la première sous-face
  853. nvfa[j * 4].ve1 = m->fa[j].ve1;
  854. nvfa[j * 4].ve2 = ptmilieu1;
  855. nvfa[j * 4].ve3 = ptmilieu2;
  856. //création de la seconde sous-face
  857. nvfa[(j * 4) + 1].ve1 = ptmilieu1;
  858. nvfa[(j * 4) + 1].ve2 = m->fa[j].ve2;
  859. nvfa[(j * 4) + 1].ve3 = ptmilieu3;
  860. //création de la troisième sous-face
  861. nvfa[(j * 4) + 2].ve1 = m->fa[j].ve3;
  862. nvfa[(j * 4) + 2].ve2 = ptmilieu2;
  863. nvfa[(j * 4) + 2].ve3 = ptmilieu3;
  864. //création de la quatrième sous-face
  865. nvfa[(j * 4) + 3].ve1 = ptmilieu1;
  866. nvfa[(j * 4) + 3].ve2 = ptmilieu3;
  867. nvfa[(j * 4) + 3].ve3 = ptmilieu2;
  868. //on met à jour les liste des points incidents des points milieux
  869. list_int_add (&(nvpt[ptmilieu1].incidentvertices),
  870. &(nvpt[ptmilieu1].nbincidentvertices), ptmilieu2,
  871. WITH_REDUNDANCE);
  872. list_int_add (&(nvpt[ptmilieu1].incidentvertices),
  873. &(nvpt[ptmilieu1].nbincidentvertices), ptmilieu3,
  874. WITH_REDUNDANCE);
  875. list_int_add (&(nvpt[ptmilieu2].incidentvertices),
  876. &(nvpt[ptmilieu2].nbincidentvertices), ptmilieu1,
  877. WITH_REDUNDANCE);
  878. list_int_add (&(nvpt[ptmilieu2].incidentvertices),
  879. &(nvpt[ptmilieu2].nbincidentvertices), ptmilieu3,
  880. WITH_REDUNDANCE);
  881. list_int_add (&(nvpt[ptmilieu3].incidentvertices),
  882. &(nvpt[ptmilieu3].nbincidentvertices), ptmilieu1,
  883. WITH_REDUNDANCE);
  884. list_int_add (&(nvpt[ptmilieu3].incidentvertices),
  885. &(nvpt[ptmilieu3].nbincidentvertices), ptmilieu2,
  886. WITH_REDUNDANCE);
  887. }
  888. //les nouveaux points sont donc créés, placés et les faces dont découpées
  889. //destruction de la table
  890. hashtable_free (table);
  891. free (table);
  892. for (int j = 0; j < m->nbvertex; j++)
  893. vf_vertex_free (&(m->ve[j]));
  894. free (m->ve);
  895. free (m->fa);
  896. //mis à jour du nombre de faces
  897. m->nbface = m->nbface * 4;
  898. //remplacement des tableaux de faces et de sommets
  899. m->fa = nvfa;
  900. m->ve = nvpt;
  901. }
  902. free (arg);
  903. }
  904. /**
  905. Subdivision d'un modele par un plan
  906. @param m pointeur sur le modele a subdiviser
  907. @param A premier point définissant le plan
  908. @param B second point définissant le plan
  909. @param C troisième point définissant le plan
  910. @param aucun
  911. **/
  912. void
  913. a2ri_vf_subdivision_by_plane (
  914. vf_model * m,
  915. point3d * A,
  916. point3d * B,
  917. point3d * C)
  918. {
  919. int indexarete[1];
  920. ITparam_decoup *arg = (ITparam_decoup *) malloc (sizeof (ITparam_decoup));
  921. a2ri_erreur_critique_si (arg == NULL,
  922. "erreur allocation memoire pour arg\na2ri_vf_subdivision_by_plane");
  923. hashtable *table = a2ri_vf_construction_edge_table (m, NULL, 0);
  924. indexarete[0] = 0;
  925. arg->indexar = indexarete;
  926. arg->m = m;
  927. arg->A = A;
  928. arg->B = B;
  929. arg->C = C;
  930. hashtable_foreach (table, IFedge_cut, arg);
  931. a2ri_vf_general_subdivision (m, table);
  932. hashtable_free (table);
  933. free (table);
  934. free (arg);
  935. }
  936. /**
  937. Subdivision d'un modele ou coupant les triangles en 6 triangles avec un point central
  938. @param m pointeur sur le modele a subdiviser
  939. @param nbiter nom c'iteration de la subdivision
  940. @param aucun
  941. **/
  942. void
  943. a2ri_vf_general_subdivision (
  944. vf_model * m,
  945. hashtable * table)
  946. {
  947. vf_edge *e1,
  948. *e2,
  949. *e3;
  950. ITargument_hashtable *arg = (ITargument_hashtable *) malloc (sizeof (ITargument_hashtable));
  951. a2ri_erreur_critique_si (arg == NULL,
  952. "erreur allocation memoire pour arg\na2ri_vf_general_subdivision");
  953. int nbfacesupp = 0;
  954. int ve1,
  955. ve2,
  956. ve3,
  957. ve4,
  958. ve5,
  959. ve6;
  960. int nbfacecourant = 0;
  961. double x,
  962. y,
  963. z;
  964. arg->att_int = 0;
  965. //calcul du nombre de sommets en plus
  966. hashtable_foreach (table, IFcount_subdivided_edge, arg);
  967. //calcul du nombre de faces supplémentaire
  968. for (int i = 0; i < m->nbface; i++)
  969. {
  970. e1 = hashtable_look_for (table, m->fa[i].ve1, m->fa[i].ve2);
  971. if (e1->att_int != -1)
  972. nbfacesupp++;
  973. e1 = hashtable_look_for (table, m->fa[i].ve2, m->fa[i].ve3);
  974. if (e1->att_int != -1)
  975. nbfacesupp++;
  976. e1 = hashtable_look_for (table, m->fa[i].ve3, m->fa[i].ve1);
  977. if (e1->att_int != -1)
  978. nbfacesupp++;
  979. }
  980. vf_vertex *nvpt =
  981. (vf_vertex *) malloc ((m->nbvertex + arg->att_int) * sizeof (vf_vertex));
  982. a2ri_erreur_critique_si (nvpt == NULL,
  983. "erreur allocation memoire pour nvpt\na2ri_vf_general_subdivision");
  984. vf_face *nvfa =
  985. (vf_face *) malloc ((m->nbface + nbfacesupp) * sizeof (vf_face));
  986. a2ri_erreur_critique_si (nvfa == NULL,
  987. "erreur allocation memoire pour nvfa\na2ri_vf_general_subdivision");
  988. //on met à jour la liste des nouveaux sommets
  989. for (int i = 0; i < m->nbvertex; i++)
  990. {
  991. nvpt[i].x = m->ve[i].x;
  992. nvpt[i].y = m->ve[i].y;
  993. nvpt[i].z = m->ve[i].z;
  994. nvpt[i].nbincidentvertices = 0;
  995. nvpt[i].incidentvertices = NULL;
  996. }
  997. for (int i = 0; i < arg->att_int; i++)
  998. {
  999. nvpt[i + m->nbvertex].nbincidentvertices = 0;
  1000. nvpt[i + m->nbvertex].incidentvertices = NULL;
  1001. }
  1002. //on met à jour la liste des aretes
  1003. for (int i = 0; i < m->nbface; i++)
  1004. {
  1005. nbfacesupp = 0;
  1006. //on cherche le nombre de face à ajouter
  1007. e1 = hashtable_look_for (table, m->fa[i].ve1, m->fa[i].ve2);
  1008. if (e1->att_int != -1)
  1009. nbfacesupp++;
  1010. e2 = hashtable_look_for (table, m->fa[i].ve2, m->fa[i].ve3);
  1011. if (e2->att_int != -1)
  1012. nbfacesupp++;
  1013. e3 = hashtable_look_for (table, m->fa[i].ve3, m->fa[i].ve1);
  1014. if (e3->att_int != -1)
  1015. nbfacesupp++;
  1016. ve1 = m->fa[i].ve1;
  1017. ve2 = m->fa[i].ve2;
  1018. ve3 = m->fa[i].ve3;
  1019. //en fonction du nombre de face supplémentaire, on traite d'une facon differente
  1020. if (nbfacesupp == 0)
  1021. {
  1022. nvfa[nbfacecourant].ve1 = ve1;
  1023. nvfa[nbfacecourant].ve2 = ve2;
  1024. nvfa[nbfacecourant].ve3 = ve3;
  1025. nbfacecourant++;
  1026. list_int_add (&(nvpt[ve1].incidentvertices),
  1027. &(nvpt[ve1].nbincidentvertices), ve2,
  1028. WITH_REDUNDANCE);
  1029. list_int_add (&(nvpt[ve2].incidentvertices),
  1030. &(nvpt[ve2].nbincidentvertices), ve1,
  1031. WITH_REDUNDANCE);
  1032. list_int_add (&(nvpt[ve1].incidentvertices),
  1033. &(nvpt[ve1].nbincidentvertices), ve3,
  1034. WITH_REDUNDANCE);
  1035. list_int_add (&(nvpt[ve3].incidentvertices),
  1036. &(nvpt[ve3].nbincidentvertices), ve1,
  1037. WITH_REDUNDANCE);
  1038. list_int_add (&(nvpt[ve2].incidentvertices),
  1039. &(nvpt[ve2].nbincidentvertices), ve3,
  1040. WITH_REDUNDANCE);
  1041. list_int_add (&(nvpt[ve3].incidentvertices),
  1042. &(nvpt[ve3].nbincidentvertices), ve2,
  1043. WITH_REDUNDANCE);
  1044. }
  1045. if (nbfacesupp == 1)
  1046. {
  1047. ve4 = e1->att_int + m->nbvertex;
  1048. if (e1->att_int == -1)
  1049. {
  1050. if (e2->att_int != -1)
  1051. {
  1052. ve1 = m->fa[i].ve2;
  1053. ve2 = m->fa[i].ve3;
  1054. ve3 = m->fa[i].ve1;
  1055. e1 = e2;
  1056. ve4 = e1->att_int + m->nbvertex;
  1057. }
  1058. else
  1059. {
  1060. ve1 = m->fa[i].ve3;
  1061. ve2 = m->fa[i].ve1;
  1062. ve3 = m->fa[i].ve2;
  1063. e1 = e3;
  1064. ve4 = e1->att_int + m->nbvertex;
  1065. }
  1066. }
  1067. nvfa[nbfacecourant].ve1 = ve1;
  1068. nvfa[nbfacecourant].ve2 = ve4;
  1069. nvfa[nbfacecourant].ve3 = ve3;
  1070. nbfacecourant++;
  1071. nvfa[nbfacecourant].ve1 = ve4;
  1072. nvfa[nbfacecourant].ve2 = ve2;
  1073. nvfa[nbfacecourant].ve3 = ve3;
  1074. nbfacecourant++;
  1075. list_int_add (&(nvpt[ve1].incidentvertices),
  1076. &(nvpt[ve1].nbincidentvertices), ve4,
  1077. WITH_REDUNDANCE);
  1078. list_int_add (&(nvpt[ve4].incidentvertices),
  1079. &(nvpt[ve4].nbincidentvertices), ve1,
  1080. WITH_REDUNDANCE);
  1081. list_int_add (&(nvpt[ve1].incidentvertices),
  1082. &(nvpt[ve1].nbincidentvertices), ve3,
  1083. WITH_REDUNDANCE);
  1084. list_int_add (&(nvpt[ve3].incidentvertices),
  1085. &(nvpt[ve3].nbincidentvertices), ve1,
  1086. WITH_REDUNDANCE);
  1087. list_int_add (&(nvpt[ve4].incidentvertices),
  1088. &(nvpt[ve4].nbincidentvertices), ve3,
  1089. WITH_REDUNDANCE);
  1090. list_int_add (&(nvpt[ve3].incidentvertices),
  1091. &(nvpt[ve3].nbincidentvertices), ve4,
  1092. WITH_REDUNDANCE);
  1093. list_int_add (&(nvpt[ve2].incidentvertices),
  1094. &(nvpt[ve2].nbincidentvertices), ve3,
  1095. WITH_REDUNDANCE);
  1096. list_int_add (&(nvpt[ve3].incidentvertices),
  1097. &(nvpt[ve3].nbincidentvertices), ve2,
  1098. WITH_REDUNDANCE);
  1099. list_int_add (&(nvpt[ve2].incidentvertices),
  1100. &(nvpt[ve2].nbincidentvertices), ve4,
  1101. WITH_REDUNDANCE);
  1102. list_int_add (&(nvpt[ve4].incidentvertices),
  1103. &(nvpt[ve4].nbincidentvertices), ve2,
  1104. WITH_REDUNDANCE);
  1105. //on parcourt une fois les aretes dans l'ordre où elles sont été définie puis dans la direction opposée
  1106. //c'est pourquoi la différence se fait dans le mauvais sens
  1107. if(ve1==e1->ve1)
  1108. {
  1109. x = m->ve[ve1].x + e1->att_double * (m->ve[ve2].x - m->ve[ve1].x);
  1110. y = m->ve[ve1].y + e1->att_double * (m->ve[ve2].y - m->ve[ve1].y);
  1111. z = m->ve[ve1].z + e1->att_double * (m->ve[ve2].z - m->ve[ve1].z);
  1112. nvpt[ve4].x = x;
  1113. nvpt[ve4].y = y;
  1114. nvpt[ve4].z = z;
  1115. }
  1116. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1117. //fait rien car on l'a deja parcouru dans le bon sens avant
  1118. }
  1119. if (nbfacesupp == 2)
  1120. {
  1121. ve4 = e1->att_int + m->nbvertex;
  1122. ve5 = e2->att_int + m->nbvertex;
  1123. if (e3->att_int != -1)
  1124. {
  1125. if (e2->att_int == -1)
  1126. {
  1127. ve1 = m->fa[i].ve3;
  1128. ve2 = m->fa[i].ve1;
  1129. ve3 = m->fa[i].ve2;
  1130. e2 = e1;
  1131. e1 = e3;
  1132. ve4 = e1->att_int + m->nbvertex;
  1133. ve5 = e2->att_int + m->nbvertex;
  1134. }
  1135. else
  1136. {
  1137. ve1 = m->fa[i].ve2;
  1138. ve2 = m->fa[i].ve3;
  1139. ve3 = m->fa[i].ve1;
  1140. e1 = e2;
  1141. e2 = e3;
  1142. ve4 = e1->att_int + m->nbvertex;
  1143. ve5 = e2->att_int + m->nbvertex;
  1144. }
  1145. }
  1146. nvfa[nbfacecourant].ve1 = ve1;
  1147. nvfa[nbfacecourant].ve2 = ve4;
  1148. nvfa[nbfacecourant].ve3 = ve5;
  1149. nbfacecourant++;
  1150. nvfa[nbfacecourant].ve1 = ve4;
  1151. nvfa[nbfacecourant].ve2 = ve2;
  1152. nvfa[nbfacecourant].ve3 = ve5;
  1153. nbfacecourant++;
  1154. nvfa[nbfacecourant].ve1 = ve5;
  1155. nvfa[nbfacecourant].ve2 = ve3;
  1156. nvfa[nbfacecourant].ve3 = ve1;
  1157. nbfacecourant++;
  1158. list_int_add (&(nvpt[ve1].incidentvertices),
  1159. &(nvpt[ve1].nbincidentvertices), ve4,
  1160. WITH_REDUNDANCE);
  1161. list_int_add (&(nvpt[ve4].incidentvertices),
  1162. &(nvpt[ve4].nbincidentvertices), ve1,
  1163. WITH_REDUNDANCE);
  1164. list_int_add (&(nvpt[ve1].incidentvertices),
  1165. &(nvpt[ve1].nbincidentvertices), ve3,
  1166. WITH_REDUNDANCE);
  1167. list_int_add (&(nvpt[ve3].incidentvertices),
  1168. &(nvpt[ve3].nbincidentvertices), ve1,
  1169. WITH_REDUNDANCE);
  1170. list_int_add (&(nvpt[ve1].incidentvertices),
  1171. &(nvpt[ve1].nbincidentvertices), ve5,
  1172. WITH_REDUNDANCE);
  1173. list_int_add (&(nvpt[ve5].incidentvertices),
  1174. &(nvpt[ve5].nbincidentvertices), ve1,
  1175. WITH_REDUNDANCE);
  1176. list_int_add (&(nvpt[ve4].incidentvertices),
  1177. &(nvpt[ve4].nbincidentvertices), ve5,
  1178. WITH_REDUNDANCE);
  1179. list_int_add (&(nvpt[ve5].incidentvertices),
  1180. &(nvpt[ve5].nbincidentvertices), ve4,
  1181. WITH_REDUNDANCE);
  1182. list_int_add (&(nvpt[ve2].incidentvertices),
  1183. &(nvpt[ve2].nbincidentvertices), ve4,
  1184. WITH_REDUNDANCE);
  1185. list_int_add (&(nvpt[ve4].incidentvertices),
  1186. &(nvpt[ve4].nbincidentvertices), ve2,
  1187. WITH_REDUNDANCE);
  1188. list_int_add (&(nvpt[ve2].incidentvertices),
  1189. &(nvpt[ve2].nbincidentvertices), ve5,
  1190. WITH_REDUNDANCE);
  1191. list_int_add (&(nvpt[ve5].incidentvertices),
  1192. &(nvpt[ve5].nbincidentvertices), ve2,
  1193. WITH_REDUNDANCE);
  1194. list_int_add (&(nvpt[ve3].incidentvertices),
  1195. &(nvpt[ve3].nbincidentvertices), ve5,
  1196. WITH_REDUNDANCE);
  1197. list_int_add (&(nvpt[ve5].incidentvertices),
  1198. &(nvpt[ve5].nbincidentvertices), ve3,
  1199. WITH_REDUNDANCE);
  1200. if(ve1==e1->ve1)
  1201. {
  1202. x = m->ve[ve1].x + e1->att_double * (m->ve[ve2].x - m->ve[ve1].x);
  1203. y = m->ve[ve1].y + e1->att_double * (m->ve[ve2].y - m->ve[ve1].y);
  1204. z = m->ve[ve1].z + e1->att_double * (m->ve[ve2].z - m->ve[ve1].z);
  1205. nvpt[ve4].x = x;
  1206. nvpt[ve4].y = y;
  1207. nvpt[ve4].z = z;
  1208. }
  1209. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1210. //fait rien car on l'a deja parcouru dans le bon sens avant
  1211. if(ve2==e2->ve1)
  1212. {
  1213. x = m->ve[ve2].x + e2->att_double * (m->ve[ve3].x - m->ve[ve2].x);
  1214. y = m->ve[ve2].y + e2->att_double * (m->ve[ve3].y - m->ve[ve2].y);
  1215. z = m->ve[ve2].z + e2->att_double * (m->ve[ve3].z - m->ve[ve2].z);
  1216. nvpt[ve5].x = x;
  1217. nvpt[ve5].y = y;
  1218. nvpt[ve5].z = z;
  1219. }
  1220. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1221. //fait rien car on l'a deja parcouru dans le bon sens avant
  1222. }
  1223. if (nbfacesupp == 3)
  1224. {
  1225. ve4 = e1->att_int + m->nbvertex;
  1226. ve5 = e2->att_int + m->nbvertex;
  1227. ve6 = e3->att_int + m->nbvertex;
  1228. nvfa[nbfacecourant].ve1 = ve1;
  1229. nvfa[nbfacecourant].ve2 = ve4;
  1230. nvfa[nbfacecourant].ve3 = ve6;
  1231. nbfacecourant++;
  1232. nvfa[nbfacecourant].ve1 = ve4;
  1233. nvfa[nbfacecourant].ve2 = ve2;
  1234. nvfa[nbfacecourant].ve3 = ve5;
  1235. nbfacecourant++;
  1236. nvfa[nbfacecourant].ve1 = ve5;
  1237. nvfa[nbfacecourant].ve2 = ve3;
  1238. nvfa[nbfacecourant].ve3 = ve6;
  1239. nbfacecourant++;
  1240. nvfa[nbfacecourant].ve1 = ve6;
  1241. nvfa[nbfacecourant].ve2 = ve4;
  1242. nvfa[nbfacecourant].ve3 = ve5;
  1243. nbfacecourant++;
  1244. list_int_add (&(nvpt[ve1].incidentvertices),
  1245. &(nvpt[ve1].nbincidentvertices), ve4,
  1246. WITH_REDUNDANCE);
  1247. list_int_add (&(nvpt[ve4].incidentvertices),
  1248. &(nvpt[ve4].nbincidentvertices), ve1,
  1249. WITH_REDUNDANCE);
  1250. list_int_add (&(nvpt[ve1].incidentvertices),
  1251. &(nvpt[ve1].nbincidentvertices), ve6,
  1252. WITH_REDUNDANCE);
  1253. list_int_add (&(nvpt[ve6].incidentvertices),
  1254. &(nvpt[ve6].nbincidentvertices), ve1,
  1255. WITH_REDUNDANCE);
  1256. list_int_add (&(nvpt[ve4].incidentvertices),
  1257. &(nvpt[ve4].nbincidentvertices), ve5,
  1258. WITH_REDUNDANCE);
  1259. list_int_add (&(nvpt[ve5].incidentvertices),
  1260. &(nvpt[ve5].nbincidentvertices), ve4,
  1261. WITH_REDUNDANCE);
  1262. list_int_add (&(nvpt[ve4].incidentvertices),
  1263. &(nvpt[ve4].nbincidentvertices), ve6,
  1264. WITH_REDUNDANCE);
  1265. list_int_add (&(nvpt[ve6].incidentvertices),
  1266. &(nvpt[ve6].nbincidentvertices), ve4,
  1267. WITH_REDUNDANCE);
  1268. list_int_add (&(nvpt[ve2].incidentvertices),
  1269. &(nvpt[ve2].nbincidentvertices), ve4,
  1270. WITH_REDUNDANCE);
  1271. list_int_add (&(nvpt[ve4].incidentvertices),
  1272. &(nvpt[ve4].nbincidentvertices), ve2,
  1273. WITH_REDUNDANCE);
  1274. list_int_add (&(nvpt[ve2].incidentvertices),
  1275. &(nvpt[ve2].nbincidentvertices), ve5,
  1276. WITH_REDUNDANCE);
  1277. list_int_add (&(nvpt[ve5].incidentvertices),
  1278. &(nvpt[ve5].nbincidentvertices), ve2,
  1279. WITH_REDUNDANCE);
  1280. list_int_add (&(nvpt[ve3].incidentvertices),
  1281. &(nvpt[ve3].nbincidentvertices), ve5,
  1282. WITH_REDUNDANCE);
  1283. list_int_add (&(nvpt[ve5].incidentvertices),
  1284. &(nvpt[ve5].nbincidentvertices), ve3,
  1285. WITH_REDUNDANCE);
  1286. list_int_add (&(nvpt[ve6].incidentvertices),
  1287. &(nvpt[ve6].nbincidentvertices), ve5,
  1288. WITH_REDUNDANCE);
  1289. list_int_add (&(nvpt[ve5].incidentvertices),
  1290. &(nvpt[ve5].nbincidentvertices), ve6,
  1291. WITH_REDUNDANCE);
  1292. list_int_add (&(nvpt[ve3].incidentvertices),
  1293. &(nvpt[ve3].nbincidentvertices), ve6,
  1294. WITH_REDUNDANCE);
  1295. list_int_add (&(nvpt[ve6].incidentvertices),
  1296. &(nvpt[ve6].nbincidentvertices), ve3,
  1297. WITH_REDUNDANCE);
  1298. if(ve1==e1->ve1)
  1299. {
  1300. x = m->ve[ve1].x + e1->att_double * (m->ve[ve2].x - m->ve[ve1].x);
  1301. y = m->ve[ve1].y + e1->att_double * (m->ve[ve2].y - m->ve[ve1].y);
  1302. z = m->ve[ve1].z + e1->att_double * (m->ve[ve2].z - m->ve[ve1].z);
  1303. nvpt[ve4].x = x;
  1304. nvpt[ve4].y = y;
  1305. nvpt[ve4].z = z;
  1306. }
  1307. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1308. //fait rien car on l'a deja parcouru dans le bon sens avant
  1309. if(ve2==e2->ve1)
  1310. {
  1311. x = m->ve[ve2].x + e2->att_double * (m->ve[ve3].x - m->ve[ve2].x);
  1312. y = m->ve[ve2].y + e2->att_double * (m->ve[ve3].y - m->ve[ve2].y);
  1313. z = m->ve[ve2].z + e2->att_double * (m->ve[ve3].z - m->ve[ve2].z);
  1314. nvpt[ve5].x = x;
  1315. nvpt[ve5].y = y;
  1316. nvpt[ve5].z = z;
  1317. }
  1318. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1319. //fait rien car on l'a deja parcouru dans le bon sens avant
  1320. if(ve3==e3->ve1)
  1321. {
  1322. x = m->ve[ve3].x + e3->att_double * (m->ve[ve1].x - m->ve[ve3].x);
  1323. y = m->ve[ve3].y + e3->att_double * (m->ve[ve1].y - m->ve[ve3].y);
  1324. z = m->ve[ve3].z + e3->att_double * (m->ve[ve1].z - m->ve[ve3].z);
  1325. nvpt[ve6].x = x;
  1326. nvpt[ve6].y = y;
  1327. nvpt[ve6].z = z;
  1328. }
  1329. //sinon on parcourt l'arete dans le mauvais sens et on ne
  1330. //fait rien car on l'a deja parcouru dans le bon sens avant
  1331. }
  1332. }
  1333. for (int i = 0; i < m->nbvertex; i++)
  1334. vf_vertex_free (&(m->ve[i]));
  1335. free (m->ve);
  1336. free (m->fa);
  1337. m->nbface = nbfacecourant;
  1338. m->nbvertex = m->nbvertex + arg->att_int;
  1339. m->fa = nvfa;
  1340. m->ve = nvpt;
  1341. free (arg);
  1342. }
  1343. /**
  1344. Subdivision d'un modèle avec la méthode de Loop
  1345. @param m pointeur sur le modèle à subdiviser
  1346. @param nbiter nombre d'itération de la subdivision
  1347. @return aucun
  1348. */
  1349. void
  1350. a2ri_vef_loop (
  1351. vef_model * m,
  1352. int nbiter)
  1353. {
  1354. int p1,
  1355. p2,
  1356. p3,
  1357. p4,
  1358. artemp1,
  1359. artemp2;
  1360. int indexarete;
  1361. for (int i = 0; i < nbiter; i++)
  1362. {
  1363. int nbpointancien = m->nbvertex;
  1364. //on crée les nouveaux points milieux des aretes avec des coordonnées temporaires
  1365. for (int j = 0; j < m->nbedge; j++)
  1366. {
  1367. p1 = m->ed[j].ve1;
  1368. p2 = m->ed[j].ve2;
  1369. double x = 0.5 * (m->ve[p1].x + m->ve[p2].x);
  1370. double y = 0.5 * (m->ve[p1].y + m->ve[p2].y);
  1371. double z = 0.5 * (m->ve[p1].z + m->ve[p2].z);
  1372. a2ri_vef_add_vertex (m, x, y, z);
  1373. }
  1374. //creation des nouveaux tableaux de sommets, aretes et faces
  1375. vef_vertex *nvpt =
  1376. (vef_vertex *) malloc (m->nbvertex * sizeof (vef_vertex));
  1377. a2ri_erreur_critique_si (nvpt == NULL,
  1378. "erreur allocation memoire pour nvpt\na2ri_vef_loop");
  1379. vef_edge *nvar =
  1380. (vef_edge *) malloc ((m->nbedge * 2 + m->nbface * 3) *
  1381. sizeof (vef_edge));
  1382. a2ri_erreur_critique_si (nvar == NULL,
  1383. "erreur allocation memoire pour nvar\na2ri_vef_loop");
  1384. vef_face *nvfa =
  1385. (vef_face *) malloc (m->nbface * 4 * sizeof (vef_face));
  1386. a2ri_erreur_critique_si (nvfa == NULL,
  1387. "erreur allocation memoire pour nvfa\na2ri_vef_loop");
  1388. //initialisation des tableaux de sommets et arete
  1389. for (int j = 0; j < m->nbvertex; j++)
  1390. {
  1391. nvpt[j].nbsharededges = 0;
  1392. nvpt[j].sharededges = NULL;
  1393. }
  1394. for (int j = 0; j < m->nbedge * 2 + m->nbface * 3; j++)
  1395. {
  1396. nvar[j].nbsharedfaces = 0;
  1397. nvar[j].sharedfaces = NULL;
  1398. }
  1399. //pour toutes les aretes
  1400. for (int j = 0; j < m->nbedge; j++)
  1401. {
  1402. //découpage des aretes en deux avec le nouveau point milieu d'arete (d'index : nombre d'ancien point + index de l'arete)
  1403. nvar[j * 2].ve1 = m->ed[j].ve1;
  1404. nvar[j * 2].ve2 = nbpointancien + j;
  1405. list_int_add (&(nvpt[m->ed[j].ve1].sharededges),
  1406. &(nvpt[m->ed[j].ve1].nbsharededges),
  1407. j * 2, WITH_REDUNDANCE);
  1408. list_int_add (&(nvpt[nbpointancien + j].sharededges),
  1409. &(nvpt[nbpointancien + j].nbsharededges),
  1410. j * 2, WITH_REDUNDANCE);
  1411. nvar[j * 2 + 1].ve1 = m->ed[j].ve2;
  1412. nvar[j * 2 + 1].ve2 = nbpointancien + j;
  1413. list_int_add (&(nvpt[m->ed[j].ve2].sharededges),
  1414. &(nvpt[m->ed[j].ve2].nbsharededges),
  1415. j * 2 + 1, WITH_REDUNDANCE);
  1416. list_int_add (&(nvpt[nbpointancien + j].sharededges),
  1417. &(nvpt[nbpointancien + j].nbsharededges),
  1418. j * 2 + 1, WITH_REDUNDANCE);
  1419. }
  1420. indexarete = m->nbedge * 2;
  1421. //pour toutes les faces du modele
  1422. for (int j = 0; j < m->nbface; j++)
  1423. {
  1424. int ar1 = m->fa[j].ed1;
  1425. int ar2 = m->fa[j].ed2;
  1426. int ar3 = m->fa[j].ed3;
  1427. int sommet;
  1428. //recherche du sommet commun entre ar1 et ar2
  1429. if (m->ed[ar1].ve1 == m->ed[ar2].ve1
  1430. || m->ed[ar1].ve1 == m->ed[ar2].ve2)
  1431. sommet = m->ed[ar1].ve1;
  1432. else
  1433. sommet = m->ed[ar1].ve2;
  1434. //on ajoute la nouvelle arete entre les deux points milieux
  1435. nvar[indexarete].ve1 = nbpointancien + ar1;
  1436. nvar[indexarete].ve2 = nbpointancien + ar2;
  1437. list_int_add (&(nvpt[nbpointancien + ar1].sharededges),
  1438. &(nvpt[nbpointancien + ar1].nbsharededges),
  1439. indexarete, WITH_REDUNDANCE);
  1440. list_int_add (&(nvpt[nbpointancien + ar2].sharededges),
  1441. &(nvpt[nbpointancien + ar2].nbsharededges),
  1442. indexarete, WITH_REDUNDANCE);
  1443. indexarete++;
  1444. // on recupere la premiere "demi arete" de l'ancienne arete1 contenant le sommet commun
  1445. if (nvar[ar1 * 2].ve1 == sommet || nvar[ar1 * 2].ve2 == sommet)
  1446. artemp1 = ar1 * 2;
  1447. else
  1448. artemp1 = (ar1 * 2) + 1;
  1449. // on recupere la premiere "demi arete" de l'ancienne arete2 contenant le sommet commun
  1450. if (nvar[ar2 * 2].ve1 == sommet || nvar[ar2 * 2].ve2 == sommet)
  1451. artemp2 = ar2 * 2;
  1452. else
  1453. artemp2 = (ar2 * 2) + 1;
  1454. //on ajoute la face contenant les deux demi aretes et la nouvelle arete
  1455. nvfa[j * 4].ed1 = indexarete - 1;
  1456. nvfa[j * 4].ed2 = artemp1;
  1457. nvfa[j * 4].ed3 = artemp2;
  1458. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  1459. &(nvar[indexarete - 1].nbsharedfaces),
  1460. j * 4, WITH_REDUNDANCE);
  1461. list_int_add (&(nvar[artemp1].sharedfaces),
  1462. &(nvar[artemp1].nbsharedfaces),
  1463. j * 4, WITH_REDUNDANCE);
  1464. list_int_add (&(nvar[artemp2].sharedfaces),
  1465. &(nvar[artemp2].nbsharedfaces),
  1466. j * 4, WITH_REDUNDANCE);
  1467. //on repete l'operation deux fois encore
  1468. if (m->ed[ar2].ve1 == m->ed[ar3].ve1
  1469. || m->ed[ar2].ve1 == m->ed[ar3].ve2)
  1470. sommet = m->ed[ar2].ve1;
  1471. else
  1472. sommet = m->ed[ar2].ve2;
  1473. nvar[indexarete].ve1 = nbpointancien + ar2;
  1474. nvar[indexarete].ve2 = nbpointancien + ar3;
  1475. list_int_add (&(nvpt[nbpointancien + ar2].sharededges),
  1476. &(nvpt[nbpointancien + ar2].nbsharededges),
  1477. indexarete, WITH_REDUNDANCE);
  1478. list_int_add (&(nvpt[nbpointancien + ar3].sharededges),
  1479. &(nvpt[nbpointancien + ar3].nbsharededges),
  1480. indexarete, WITH_REDUNDANCE);
  1481. indexarete++;
  1482. if (nvar[ar2 * 2].ve1 == sommet || nvar[ar2 * 2].ve2 == sommet)
  1483. artemp1 = ar2 * 2;
  1484. else
  1485. artemp1 = (ar2 * 2) + 1;
  1486. if (nvar[ar3 * 2].ve1 == sommet || nvar[ar3 * 2].ve2 == sommet)
  1487. artemp2 = ar3 * 2;
  1488. else
  1489. artemp2 = (ar3 * 2) + 1;
  1490. nvfa[(j * 4) + 1].ed1 = indexarete - 1;
  1491. nvfa[(j * 4) + 1].ed2 = artemp1;
  1492. nvfa[(j * 4) + 1].ed3 = artemp2;
  1493. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  1494. &(nvar[indexarete - 1].nbsharedfaces),
  1495. j * 4 + 1, WITH_REDUNDANCE);
  1496. list_int_add (&(nvar[artemp1].sharedfaces),
  1497. &(nvar[artemp1].nbsharedfaces),
  1498. j * 4 + 1, WITH_REDUNDANCE);
  1499. list_int_add (&(nvar[artemp2].sharedfaces),
  1500. &(nvar[artemp2].nbsharedfaces),
  1501. j * 4 + 1, WITH_REDUNDANCE);
  1502. if (m->ed[ar1].ve1 == m->ed[ar3].ve1
  1503. || m->ed[ar1].ve1 == m->ed[ar3].ve2)
  1504. sommet = m->ed[ar1].ve1;
  1505. else
  1506. sommet = m->ed[ar1].ve2;
  1507. nvar[indexarete].ve1 = nbpointancien + ar1;
  1508. nvar[indexarete].ve2 = nbpointancien + ar3;
  1509. list_int_add (&(nvpt[nbpointancien + ar1].sharededges),
  1510. &(nvpt[nbpointancien + ar1].nbsharededges),
  1511. indexarete, WITH_REDUNDANCE);
  1512. list_int_add (&(nvpt[nbpointancien + ar3].sharededges),
  1513. &(nvpt[nbpointancien + ar3].nbsharededges),
  1514. indexarete, WITH_REDUNDANCE);
  1515. indexarete++;
  1516. if (nvar[ar1 * 2].ve1 == sommet || nvar[ar1 * 2].ve2 == sommet)
  1517. artemp1 = ar1 * 2;
  1518. else
  1519. artemp1 = (ar1 * 2) + 1;
  1520. if (nvar[ar3 * 2].ve1 == sommet || nvar[ar3 * 2].ve2 == sommet)
  1521. artemp2 = ar3 * 2;
  1522. else
  1523. artemp2 = (ar3 * 2) + 1;
  1524. nvfa[(j * 4) + 2].ed1 = indexarete - 1;
  1525. nvfa[(j * 4) + 2].ed2 = artemp2;
  1526. nvfa[(j * 4) + 2].ed3 = artemp1;
  1527. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  1528. &(nvar[indexarete - 1].nbsharedfaces),
  1529. j * 4 + 2, WITH_REDUNDANCE);
  1530. list_int_add (&(nvar[artemp1].sharedfaces),
  1531. &(nvar[artemp1].nbsharedfaces),
  1532. j * 4 + 2, WITH_REDUNDANCE);
  1533. list_int_add (&(nvar[artemp2].sharedfaces),
  1534. &(nvar[artemp2].nbsharedfaces),
  1535. j * 4 + 2, WITH_REDUNDANCE);
  1536. //on ajoute une nouvelles face composé des trois nouvelles aretes
  1537. nvfa[(j * 4) + 3].ed1 = indexarete - 1;
  1538. nvfa[(j * 4) + 3].ed2 = indexarete - 3;
  1539. nvfa[(j * 4) + 3].ed3 = indexarete - 2;
  1540. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  1541. &(nvar[indexarete - 1].nbsharedfaces),
  1542. j * 4 + 3, WITH_REDUNDANCE);
  1543. list_int_add (&(nvar[indexarete - 2].sharedfaces),
  1544. &(nvar[indexarete - 2].nbsharedfaces),
  1545. j * 4 + 3, WITH_REDUNDANCE);
  1546. list_int_add (&(nvar[indexarete - 3].sharedfaces),
  1547. &(nvar[indexarete - 3].nbsharedfaces),
  1548. j * 4 + 3, WITH_REDUNDANCE);
  1549. }
  1550. //repositionnement des anciens sommets
  1551. for (int j = 0; j < nbpointancien; j++)
  1552. {
  1553. int bord = 0;
  1554. int mpt1 = -1;
  1555. int mpt2 = -1;
  1556. //on regarde sur le sommet appartient à une arete ne partageant qu'une seule face
  1557. for (int k = 0; k < m->ve[j].nbsharededges; k++)
  1558. if (m->ed[m->ve[j].sharededges[k]].nbsharedfaces == 1)
  1559. {
  1560. //dans ce cas le point est sur le bord du maillage
  1561. bord++;
  1562. //on recherche les deux sommets qui serviront à son repositionnement
  1563. if (mpt1 == -1)
  1564. if (m->ed[m->ve[j].sharededges[k]].ve1 == j)
  1565. mpt1 = m->ed[m->ve[j].sharededges[k]].ve2;
  1566. else
  1567. mpt1 = m->ed[m->ve[j].sharededges[k]].ve1;
  1568. else if (m->ed[m->ve[j].sharededges[k]].ve1 == j)
  1569. mpt2 = m->ed[m->ve[j].sharededges[k]].ve2;
  1570. else
  1571. mpt2 = m->ed[m->ve[j].sharededges[k]].ve1;
  1572. }
  1573. if (bord == 0)
  1574. {
  1575. //dans le cas d'un sommet intérieur au maillage
  1576. double alphan =
  1577. (1.0 / 64.0) * (40 -
  1578. (3 +
  1579. 2 * cos (2 * M_PI /
  1580. m->ve[j].nbsharededges)) * (3 +
  1581. 2 *
  1582. cos (2 *
  1583. M_PI
  1584. /
  1585. m->
  1586. ve
  1587. [j].
  1588. nbsharededges)));
  1589. double centre = 1.0 - alphan;
  1590. double b = alphan / m->ve[j].nbsharededges;
  1591. int *looploi1 = NULL;
  1592. int nbeltlooploi1 = 0;
  1593. for (int k = 0; k < m->ve[j].nbsharededges; k++)
  1594. if (m->ed[m->ve[j].sharededges[k]].ve1 == j)
  1595. list_int_add (&looploi1, &nbeltlooploi1,
  1596. (m->ed[m->ve[j].sharededges[k]].ve2),
  1597. WITH_REDUNDANCE);
  1598. else
  1599. list_int_add (&looploi1, &nbeltlooploi1,
  1600. (m->ed[m->ve[j].sharededges[k]].ve1),
  1601. WITH_REDUNDANCE);
  1602. //on calcule les nouvelles coordonnées du sommet
  1603. double x = centre * m->ve[j].x;
  1604. double y = centre * m->ve[j].y;
  1605. double z = centre * m->ve[j].z;
  1606. for (int k = 0; k < m->ve[j].nbsharededges; k++)
  1607. {
  1608. x += b * m->ve[looploi1[k]].x;
  1609. y += b * m->ve[looploi1[k]].y;
  1610. z += b * m->ve[looploi1[k]].z;
  1611. }
  1612. //qu'on place dans le nouveau tableau
  1613. nvpt[j].x = x;
  1614. nvpt[j].y = y;
  1615. nvpt[j].z = z;
  1616. //mis à jour de la bounding box
  1617. if (j == 0)
  1618. {
  1619. m->xmin = x;
  1620. m->xmax = x;
  1621. m->ymin = y;
  1622. m->ymax = y;
  1623. m->zmin = z;
  1624. m->zmax = z;
  1625. }
  1626. else
  1627. {
  1628. if (m->xmin > x)
  1629. m->xmin = x;
  1630. if (m->xmax < x)
  1631. m->xmax = x;
  1632. if (m->ymin > y)
  1633. m->ymin = y;
  1634. if (m->ymax < y)
  1635. m->ymax = y;
  1636. if (m->zmin > z)
  1637. m->zmin = z;
  1638. if (m->zmax < z)
  1639. m->zmax = z;
  1640. }
  1641. free (looploi1);
  1642. }
  1643. else
  1644. {
  1645. //dans le cas d'un point sur le bord du maillage
  1646. //on calcule les nouvelles coordonnées du sommet
  1647. double x =
  1648. (1.0 / 8.0) * (m->ve[mpt1].x + m->ve[mpt2].x) +
  1649. (6.0 / 8.0) * m->ve[j].x;
  1650. double y =
  1651. (1.0 / 8.0) * (m->ve[mpt1].y + m->ve[mpt2].y) +
  1652. (6.0 / 8.0) * m->ve[j].y;
  1653. double z =
  1654. (1.0 / 8.0) * (m->ve[mpt1].z + m->ve[mpt2].z) +
  1655. (6.0 / 8.0) * m->ve[j].z;
  1656. //qu'on place dans le nouveau tableau
  1657. nvpt[j].x = x;
  1658. nvpt[j].y = y;
  1659. nvpt[j].z = z;
  1660. //on met à jour la bounding box
  1661. if (j == 0)
  1662. {
  1663. m->xmin = x;
  1664. m->xmax = x;
  1665. m->ymin = y;
  1666. m->ymax = y;
  1667. m->zmin = z;
  1668. m->zmax = z;
  1669. }
  1670. else
  1671. {
  1672. if (m->xmin > x)
  1673. m->xmin = x;
  1674. if (m->xmax < x)
  1675. m->xmax = x;
  1676. if (m->ymin > y)
  1677. m->ymin = y;
  1678. if (m->ymax < y)
  1679. m->ymax = y;
  1680. if (m->zmin > z)
  1681. m->zmin = z;
  1682. if (m->zmax < z)
  1683. m->zmax = z;
  1684. }
  1685. }
  1686. }
  1687. //pour les nouveaux sommets
  1688. for (int j = 0; j < m->nbvertex - nbpointancien; j++)
  1689. {
  1690. //on récupère les sommets servant au repositionnement
  1691. p1 = m->ed[j].ve1;
  1692. p2 = m->ed[j].ve2;
  1693. p3 = -1;
  1694. p4 = -1;
  1695. if (m->ed[j].nbsharedfaces == 2)
  1696. {
  1697. //sommet intérieur au maillage
  1698. //p3 et p4 sont les deux sommets appartenant aux deux faces partagées par l'arete mais n'étant pas sur l'arete
  1699. int f1 = m->ed[j].sharedfaces[0];
  1700. int f2 = m->ed[j].sharedfaces[1];
  1701. int ar1 = m->fa[f1].ed1;
  1702. if (ar1 == j)
  1703. ar1 = m->fa[f1].ed2;
  1704. int ar2 = m->fa[f2].ed1;
  1705. if (ar2 == j)
  1706. ar2 = m->fa[f2].ed2;
  1707. p3 = m->ed[ar1].ve1;
  1708. if (p3 == p1 || p3 == p2)
  1709. p3 = m->ed[ar1].ve2;
  1710. p4 = m->ed[ar2].ve1;
  1711. if (p4 == p1 || p4 == p2)
  1712. p4 = m->ed[ar2].ve2;
  1713. //on calcule les nuvelles coordonnées du sommet
  1714. double x =
  1715. (3.0 / 8.0) * (m->ve[p1].x + m->ve[p2].x) +
  1716. (1.0 / 8.0) * (m->ve[p3].x + m->ve[p4].x);
  1717. double y =
  1718. (3.0 / 8.0) * (m->ve[p1].y + m->ve[p2].y) +
  1719. (1.0 / 8.0) * (m->ve[p3].y + m->ve[p4].y);
  1720. double z =
  1721. (3.0 / 8.0) * (m->ve[p1].z + m->ve[p2].z) +
  1722. (1.0 / 8.0) * (m->ve[p3].z + m->ve[p4].z);
  1723. //qu'on place dans le nuveau tableau
  1724. nvpt[nbpointancien + j].x = x;
  1725. nvpt[nbpointancien + j].y = y;
  1726. nvpt[nbpointancien + j].z = z;
  1727. //mis à jour de la bounding box
  1728. if (m->xmin > x)
  1729. m->xmin = x;
  1730. if (m->xmax < x)
  1731. m->xmax = x;
  1732. if (m->ymin > y)
  1733. m->ymin = y;
  1734. if (m->ymax < y)
  1735. m->ymax = y;
  1736. if (m->zmin > z)
  1737. m->zmin = z;
  1738. if (m->zmax < z)
  1739. m->zmax = z;
  1740. }
  1741. else
  1742. {
  1743. //calcul de la nouvelles position du nouveau point (sommet sur le bord du maillage)
  1744. double x = 0.5 * (m->ve[p1].x + m->ve[p2].x);
  1745. double y = 0.5 * (m->ve[p1].y + m->ve[p2].y);
  1746. double z = 0.5 * (m->ve[p1].z + m->ve[p2].z);
  1747. //on met ces coordonnées dans le nouveau tableau
  1748. nvpt[nbpointancien + j].x = x;
  1749. nvpt[nbpointancien + j].y = y;
  1750. nvpt[nbpointancien + j].z = z;
  1751. //mis à jour de la bounding box
  1752. if (m->xmin > x)
  1753. m->xmin = x;
  1754. if (m->xmax < x)
  1755. m->xmax = x;
  1756. if (m->ymin > y)
  1757. m->ymin = y;
  1758. if (m->ymax < y)
  1759. m->ymax = y;
  1760. if (m->zmin > z)
  1761. m->zmin = z;
  1762. if (m->zmax < z)
  1763. m->zmax = z;
  1764. }
  1765. }
  1766. for (int j = 0; j < m->nbvertex; j++)
  1767. vef_vertex_free (&(m->ve[j]));
  1768. for (int j = 0; j < m->nbedge; j++)
  1769. vef_edge_free (&(m->ed[j]));
  1770. free (m->ve);
  1771. free (m->ed);
  1772. free (m->fa);
  1773. //on remplace les tableaux de sommets, aretes et faces
  1774. m->fa = nvfa;
  1775. m->ed = nvar;
  1776. m->ve = nvpt;
  1777. //on met à jour les nombre d'aretes et de faces
  1778. m->nbedge = 2 * m->nbedge + 3 * m->nbface;
  1779. m->nbface = m->nbface * 4;
  1780. }
  1781. }
  1782. /**
  1783. Subdivision d'un modèle avec la méthode de Butterfly
  1784. @param m pointeur sur le modèle à subdiviser
  1785. @param nbiter nombre d'itération de la subdivision
  1786. @param tension paramètre de tension
  1787. @return aucun
  1788. */
  1789. void
  1790. a2ri_vef_butterfly (
  1791. vef_model * m,
  1792. int nbiter,
  1793. double tension)
  1794. {
  1795. int p1,
  1796. p2,
  1797. p3,
  1798. p4,
  1799. p5,
  1800. p6,
  1801. p7,
  1802. p8,
  1803. artemp1,
  1804. artemp2,
  1805. artemp3,
  1806. artemp4;
  1807. for (int i = 0; i < nbiter; i++)
  1808. {
  1809. int nbpointancien = m->nbvertex;
  1810. for (int j = 0; j < m->nbedge; j++)
  1811. {
  1812. p1 = -1;
  1813. p2 = -1;
  1814. p3 = -1;
  1815. p4 = -1;
  1816. p5 = -1;
  1817. p6 = -1;
  1818. p7 = -1;
  1819. p8 = -1;
  1820. IFvef_but_recherche_p1_p2 (m, j, &p1, &p2);
  1821. IFvef_but_recherche_p3_p4 (m, j, &p3, &p4, &artemp1, &artemp2,
  1822. &artemp3, &artemp4);
  1823. IFvef_but_recherche_p5_p6_p7_p8 (m, artemp1, artemp2, artemp3,
  1824. artemp4, &p5, &p6, &p7, &p8);
  1825. double x,
  1826. y,
  1827. z;
  1828. x = 0;
  1829. y = 0;
  1830. z = 0;
  1831. if (p1 != -1)
  1832. {
  1833. x += 0.5 * m->ve[p1].x;
  1834. y += 0.5 * m->ve[p1].y;
  1835. z += 0.5 * m->ve[p1].z;
  1836. }
  1837. if (p2 != -1)
  1838. {
  1839. x += 0.5 * m->ve[p2].x;
  1840. y += 0.5 * m->ve[p2].y;
  1841. z += 0.5 * m->ve[p2].z;
  1842. }
  1843. if (p3 != -1)
  1844. {
  1845. x += 2 * tension * m->ve[p3].x;
  1846. y += 2 * tension * m->ve[p3].y;
  1847. z += 2 * tension * m->ve[p3].z;
  1848. }
  1849. if (p4 != -1)
  1850. {
  1851. x += 2 * tension * m->ve[p4].x;
  1852. y += 2 * tension * m->ve[p4].y;
  1853. z += 2 * tension * m->ve[p4].z;
  1854. }
  1855. if (p5 != -1)
  1856. {
  1857. x -= tension * m->ve[p5].x;
  1858. y -= tension * m->ve[p5].y;
  1859. z -= tension * m->ve[p5].z;
  1860. }
  1861. if (p6 != -1)
  1862. {
  1863. x -= tension * m->ve[p6].x;
  1864. y -= tension * m->ve[p6].y;
  1865. z -= tension * m->ve[p6].z;
  1866. }
  1867. if (p7 != -1)
  1868. {
  1869. x -= tension * m->ve[p7].x;
  1870. y -= tension * m->ve[p7].y;
  1871. z -= tension * m->ve[p7].z;
  1872. }
  1873. if (p8 != -1)
  1874. {
  1875. x -= tension * m->ve[p8].x;
  1876. y -= tension * m->ve[p8].y;
  1877. z -= tension * m->ve[p8].z;
  1878. }
  1879. a2ri_vef_add_vertex (m, x, y, z);
  1880. if (x < m->xmin)
  1881. m->xmin = x;
  1882. if (x > m->xmax)
  1883. m->xmax = x;
  1884. if (y < m->ymin)
  1885. m->ymin = y;
  1886. if (y > m->ymax)
  1887. m->ymax = y;
  1888. if (z < m->zmin)
  1889. m->zmin = z;
  1890. if (z > m->zmax)
  1891. m->zmax = z;
  1892. }
  1893. vef_edge *nvar =
  1894. (vef_edge *) malloc (((m->nbedge * 2) + (m->nbface * 3)) *
  1895. sizeof (vef_edge));
  1896. a2ri_erreur_critique_si (nvar == NULL,
  1897. "erreur allocation memoire pour nvar\na2ri_vef_butterfly");
  1898. vef_face *nvfa =
  1899. (vef_face *) malloc ((m->nbface * 4) * sizeof (vef_face));
  1900. a2ri_erreur_critique_si (nvfa == NULL,
  1901. "erreur allocation memoire pour nvfa\na2ri_vef_butterfly");
  1902. for (int i = 0; i < m->nbvertex; i++)
  1903. {
  1904. free (m->ve[i].sharededges);
  1905. m->ve[i].sharededges = NULL;
  1906. m->ve[i].nbsharededges = 0;
  1907. }
  1908. //subdivision
  1909. int indexarete = 0;
  1910. //coupe toutes les anciennes aretes en deux
  1911. for (int j = 0; j < m->nbedge; j++)
  1912. {
  1913. nvar[indexarete].ve1 = m->ed[j].ve1;
  1914. nvar[indexarete].ve2 = nbpointancien + j;
  1915. list_int_add (&(m->ve[m->ed[j].ve1].sharededges),
  1916. &(m->ve[m->ed[j].ve1].nbsharededges),
  1917. indexarete, WITH_REDUNDANCE);
  1918. list_int_add (&(m->ve[nbpointancien + j].sharededges),
  1919. &(m->ve[nbpointancien + j].nbsharededges),
  1920. indexarete, WITH_REDUNDANCE);
  1921. indexarete++;
  1922. nvar[indexarete].ve1 = m->ed[j].ve2;
  1923. nvar[indexarete].ve2 = nbpointancien + j;
  1924. list_int_add (&(m->ve[m->ed[j].ve2].sharededges),
  1925. &(m->ve[m->ed[j].ve2].nbsharededges),
  1926. indexarete, WITH_REDUNDANCE);
  1927. list_int_add (&(m->ve[nbpointancien + j].sharededges),
  1928. &(m->ve[nbpointancien + j].nbsharededges),
  1929. indexarete, WITH_REDUNDANCE);
  1930. indexarete++;
  1931. }
  1932. //pour chaque face
  1933. for (int j = 0; j < m->nbface; j++)
  1934. {
  1935. int ar1 = m->fa[j].ed1;
  1936. int ar2 = m->fa[j].ed2;
  1937. int ar3 = m->fa[j].ed3;
  1938. int artemp1,
  1939. artemp2;
  1940. int sommet;
  1941. // on recupere le sommet commun a l'arete 1 et 2
  1942. if (m->ed[ar1].ve1 == m->ed[ar2].ve1
  1943. || m->ed[ar1].ve1 == m->ed[ar2].ve2)
  1944. sommet = m->ed[ar1].ve1;
  1945. else
  1946. sommet = m->ed[ar1].ve2;
  1947. // on ajoute une arete entre les points milieu de l'arete 1 et 2 (point milieu qui se trouve a ar1+nbpointancien)
  1948. nvar[indexarete].ve1 = nbpointancien + ar1;
  1949. nvar[indexarete].ve2 = nbpointancien + ar2;
  1950. list_int_add (&(m->ve[nbpointancien + ar1].sharededges),
  1951. &(m->ve[nbpointancien + ar1].nbsharededges),
  1952. indexarete, WITH_REDUNDANCE);
  1953. list_int_add (&(m->ve[nbpointancien + ar2].sharededges),
  1954. &(m->ve[nbpointancien + ar2].nbsharededges),
  1955. indexarete, WITH_REDUNDANCE);
  1956. indexarete++;
  1957. // on recupere la premiere "demi arete" de l'ancienne arete1 contenant le sommet commun
  1958. if (nvar[ar1 * 2].ve1 == sommet || nvar[ar1 * 2].ve2 == sommet)
  1959. artemp1 = ar1 * 2;
  1960. else
  1961. artemp1 = (ar1 * 2) + 1;
  1962. // on recupere la premiere "demi arete" de l'ancienne arete2 contenant le sommet commun
  1963. if (nvar[ar2 * 2].ve1 == sommet || nvar[ar2 * 2].ve2 == sommet)
  1964. artemp2 = ar2 * 2;
  1965. else
  1966. artemp2 = (ar2 * 2) + 1;
  1967. //on ajoute la face contenant les deux demi aretes et la nouvelle arete
  1968. nvfa[j * 4].ed1 = indexarete - 1;
  1969. nvfa[j * 4].ed2 = artemp1;
  1970. nvfa[j * 4].ed3 = artemp2;
  1971. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  1972. &(nvar[indexarete - 1].nbsharedfaces),
  1973. j * 4, WITH_REDUNDANCE);
  1974. list_int_add (&(nvar[artemp1].sharedfaces),
  1975. &(nvar[artemp1].nbsharedfaces),
  1976. j * 4, WITH_REDUNDANCE);
  1977. list_int_add (&(nvar[artemp2].sharedfaces),
  1978. &(nvar[artemp2].nbsharedfaces),
  1979. j * 4, WITH_REDUNDANCE);
  1980. //on repete l'operation deux fois encore
  1981. if (m->ed[ar2].ve1 == m->ed[ar3].ve1
  1982. || m->ed[ar2].ve1 == m->ed[ar3].ve2)
  1983. sommet = m->ed[ar2].ve1;
  1984. else
  1985. sommet = m->ed[ar2].ve2;
  1986. nvar[indexarete].ve1 = nbpointancien + ar2;
  1987. nvar[indexarete].ve2 = nbpointancien + ar3;
  1988. list_int_add (&(m->ve[nbpointancien + ar2].sharededges),
  1989. &(m->ve[nbpointancien + ar2].nbsharededges),
  1990. indexarete, WITH_REDUNDANCE);
  1991. list_int_add (&(m->ve[nbpointancien + ar3].sharededges),
  1992. &(m->ve[nbpointancien + ar3].nbsharededges),
  1993. indexarete, WITH_REDUNDANCE);
  1994. indexarete++;
  1995. if (nvar[ar2 * 2].ve1 == sommet || nvar[ar2 * 2].ve2 == sommet)
  1996. artemp1 = ar2 * 2;
  1997. else
  1998. artemp1 = (ar2 * 2) + 1;
  1999. if (nvar[ar3 * 2].ve1 == sommet || nvar[ar3 * 2].ve2 == sommet)
  2000. artemp2 = ar3 * 2;
  2001. else
  2002. artemp2 = (ar3 * 2) + 1;
  2003. nvfa[j * 4 + 1].ed1 = indexarete - 1;
  2004. nvfa[j * 4 + 1].ed2 = artemp1;
  2005. nvfa[j * 4 + 1].ed3 = artemp2;
  2006. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  2007. &(nvar[indexarete - 1].nbsharedfaces),
  2008. j * 4 + 1, WITH_REDUNDANCE);
  2009. list_int_add (&(nvar[artemp1].sharedfaces),
  2010. &(nvar[artemp1].nbsharedfaces),
  2011. j * 4 + 1, WITH_REDUNDANCE);
  2012. list_int_add (&(nvar[artemp2].sharedfaces),
  2013. &(nvar[artemp2].nbsharedfaces),
  2014. j * 4 + 1, WITH_REDUNDANCE);
  2015. if (m->ed[ar1].ve1 == m->ed[ar3].ve1
  2016. || m->ed[ar1].ve1 == m->ed[ar3].ve2)
  2017. sommet = m->ed[ar1].ve1;
  2018. else
  2019. sommet = m->ed[ar1].ve2;
  2020. nvar[indexarete].ve1 = nbpointancien + ar1;
  2021. nvar[indexarete].ve2 = nbpointancien + ar3;
  2022. list_int_add (&(m->ve[nbpointancien + ar1].sharededges),
  2023. &(m->ve[nbpointancien + ar1].nbsharededges),
  2024. indexarete, WITH_REDUNDANCE);
  2025. list_int_add (&(m->ve[nbpointancien + ar3].sharededges),
  2026. &(m->ve[nbpointancien + ar3].nbsharededges),
  2027. indexarete, WITH_REDUNDANCE);
  2028. indexarete++;
  2029. if (nvar[ar1 * 2].ve1 == sommet || nvar[ar1 * 2].ve2 == sommet)
  2030. artemp1 = ar1 * 2;
  2031. else
  2032. artemp1 = (ar1 * 2) + 1;
  2033. if (nvar[ar3 * 2].ve1 == sommet || nvar[ar3 * 2].ve2 == sommet)
  2034. artemp2 = ar3 * 2;
  2035. else
  2036. artemp2 = (ar3 * 2) + 1;
  2037. nvfa[j * 4 + 2].ed1 = indexarete - 1;
  2038. nvfa[j * 4 + 2].ed2 = artemp2;
  2039. nvfa[j * 4 + 2].ed3 = artemp1;
  2040. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  2041. &(nvar[indexarete - 1].nbsharedfaces),
  2042. j * 4 + 2, WITH_REDUNDANCE);
  2043. list_int_add (&(nvar[artemp1].sharedfaces),
  2044. &(nvar[artemp1].nbsharedfaces),
  2045. j * 4 + 2, WITH_REDUNDANCE);
  2046. list_int_add (&(nvar[artemp2].sharedfaces),
  2047. &(nvar[artemp2].nbsharedfaces),
  2048. j * 4 + 2, WITH_REDUNDANCE);
  2049. //on ajoute une nouvelles face composé des trois nouvelles aretes
  2050. nvfa[j * 4 + 3].ed1 = indexarete - 1;
  2051. nvfa[j * 4 + 3].ed2 = indexarete - 3;
  2052. nvfa[j * 4 + 3].ed3 = indexarete - 2;
  2053. list_int_add (&(nvar[indexarete - 1].sharedfaces),
  2054. &(nvar[indexarete - 1].nbsharedfaces),
  2055. j * 4 + 3, WITH_REDUNDANCE);
  2056. list_int_add (&(nvar[indexarete - 2].sharedfaces),
  2057. &(nvar[indexarete - 2].nbsharedfaces),
  2058. j * 4 + 3, WITH_REDUNDANCE);
  2059. list_int_add (&(nvar[indexarete - 3].sharedfaces),
  2060. &(nvar[indexarete - 3].nbsharedfaces),
  2061. j * 4 + 3, WITH_REDUNDANCE);
  2062. }
  2063. m->nbedge = 2 * m->nbedge + 3 * m->nbface;
  2064. m->nbface *= 4;
  2065. m->fa = nvfa;
  2066. m->ed = nvar;
  2067. for (int j = 0; j < m->nbvertex; j++)
  2068. {
  2069. if (m->ve[j].x < m->xmin)
  2070. m->xmin = m->ve[j].x;
  2071. if (m->ve[j].x > m->xmax)
  2072. m->xmax = m->ve[j].x;
  2073. if (m->ve[j].y < m->ymin)
  2074. m->ymin = m->ve[j].y;
  2075. if (m->ve[j].y > m->ymax)
  2076. m->ymax = m->ve[j].y;
  2077. if (m->ve[j].z < m->zmin)
  2078. m->zmin = m->ve[j].z;
  2079. if (m->ve[j].z > m->zmax)
  2080. m->zmax = m->ve[j].z;
  2081. }
  2082. }
  2083. }