|
@@ -0,0 +1,220 @@
|
|
|
+
|
|
|
+
|
|
|
+"""
|
|
|
+Created on Wed Jun 19 11:47:42 2019
|
|
|
+
|
|
|
+@author: jbuisine
|
|
|
+"""
|
|
|
+
|
|
|
+import sys, os, argparse
|
|
|
+import numpy as np
|
|
|
+import random
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+from PIL import Image
|
|
|
+from ipfml import processing, metrics, utils
|
|
|
+from skimage import color
|
|
|
+
|
|
|
+from modules.utils import config as cfg
|
|
|
+from modules.utils import data as dt
|
|
|
+
|
|
|
+from transformation_functions import svd_reconstruction
|
|
|
+from modules.classes.Transformation import Transformation
|
|
|
+
|
|
|
+
|
|
|
+config_filename = cfg.config_filename
|
|
|
+zone_folder = cfg.zone_folder
|
|
|
+learned_folder = cfg.learned_zones_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+
|
|
|
+scenes_list = cfg.scenes_names
|
|
|
+scenes_indexes = cfg.scenes_indices
|
|
|
+choices = cfg.normalization_choices
|
|
|
+dataset_path = cfg.dataset_path
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+metric_choices = cfg.metric_choices_labels
|
|
|
+output_data_folder = cfg.output_data_folder
|
|
|
+
|
|
|
+generic_output_file_svd = '_random.csv'
|
|
|
+
|
|
|
+def generate_data_model(_scenes_list, _filename, _transformations, _scenes, _nb_zones = 4, _random=0):
|
|
|
+
|
|
|
+ output_train_filename = _filename + ".train"
|
|
|
+ output_test_filename = _filename + ".test"
|
|
|
+
|
|
|
+ if not '/' in output_train_filename:
|
|
|
+ raise Exception("Please select filename with directory path to save data. Example : data/dataset")
|
|
|
+
|
|
|
+
|
|
|
+ if not os.path.exists(output_data_folder):
|
|
|
+ os.makedirs(output_data_folder)
|
|
|
+
|
|
|
+ train_file_data = []
|
|
|
+ test_file_data = []
|
|
|
+
|
|
|
+ scenes = os.listdir(dataset_path)
|
|
|
+
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+
|
|
|
+ for id_scene, folder_scene in enumerate(_scenes_list):
|
|
|
+
|
|
|
+ scene_path = os.path.join(dataset_path, folder_scene)
|
|
|
+
|
|
|
+ zones_indices = zones
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if _random:
|
|
|
+ random.shuffle(zones_indices)
|
|
|
+
|
|
|
+
|
|
|
+ learned_zones_indices = zones_indices[:_nb_zones]
|
|
|
+
|
|
|
+
|
|
|
+ folder_learned_path = os.path.join(learned_folder, _filename.split('/')[1])
|
|
|
+
|
|
|
+ if not os.path.exists(folder_learned_path):
|
|
|
+ os.makedirs(folder_learned_path)
|
|
|
+
|
|
|
+ file_learned_path = os.path.join(folder_learned_path, folder_scene + '.csv')
|
|
|
+
|
|
|
+ with open(file_learned_path, 'w') as f:
|
|
|
+ for i in learned_zones_indices:
|
|
|
+ f.write(str(i) + ';')
|
|
|
+
|
|
|
+ for id_zone, index_folder in enumerate(zones_indices):
|
|
|
+
|
|
|
+ index_str = str(index_folder)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+
|
|
|
+ current_zone_folder = "zone" + index_str
|
|
|
+ zone_path = os.path.join(scene_path, current_zone_folder)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ metrics_path = []
|
|
|
+
|
|
|
+ for transformation in _transformations:
|
|
|
+ metric_interval_path = os.path.join(zone_path, transformation.getTransformationPath())
|
|
|
+ metrics_path.append(metric_interval_path)
|
|
|
+
|
|
|
+
|
|
|
+ for label in os.listdir(metrics_path[0]):
|
|
|
+
|
|
|
+ label_metrics_path = []
|
|
|
+
|
|
|
+ for path in metrics_path:
|
|
|
+ label_path = os.path.join(path, label)
|
|
|
+ label_metrics_path.append(label_path)
|
|
|
+
|
|
|
+
|
|
|
+ metrics_images_list = []
|
|
|
+
|
|
|
+ for label_path in label_metrics_path:
|
|
|
+ images = sorted(os.listdir(label_path))
|
|
|
+ metrics_images_list.append(images)
|
|
|
+
|
|
|
+
|
|
|
+ for index_image in range(0, len(metrics_images_list[0])):
|
|
|
+
|
|
|
+ images_path = []
|
|
|
+
|
|
|
+
|
|
|
+ for index_metric in range(0, len(metrics_path)):
|
|
|
+ img_path = metrics_images_list[index_metric][index_image]
|
|
|
+ images_path.append(os.path.join(label_metrics_path[index_metric], img_path))
|
|
|
+
|
|
|
+ if label == cfg.noisy_folder:
|
|
|
+ line = '1;'
|
|
|
+ else:
|
|
|
+ line = '0;'
|
|
|
+
|
|
|
+
|
|
|
+ for id_path, img_path in enumerate(images_path):
|
|
|
+ if id_path < len(images_path) - 1:
|
|
|
+ line = line + img_path + '::'
|
|
|
+ else:
|
|
|
+ line = line + img_path
|
|
|
+
|
|
|
+ line = line + '\n'
|
|
|
+
|
|
|
+ if id_zone < _nb_zones and folder_scene in _scenes:
|
|
|
+ train_file_data.append(line)
|
|
|
+ else:
|
|
|
+ test_file_data.append(line)
|
|
|
+
|
|
|
+ train_file = open(output_train_filename, 'w')
|
|
|
+ test_file = open(output_test_filename, 'w')
|
|
|
+
|
|
|
+ random.shuffle(train_file_data)
|
|
|
+ random.shuffle(test_file_data)
|
|
|
+
|
|
|
+ for line in train_file_data:
|
|
|
+ train_file.write(line)
|
|
|
+
|
|
|
+ for line in test_file_data:
|
|
|
+ test_file.write(line)
|
|
|
+
|
|
|
+ train_file.close()
|
|
|
+ test_file.close()
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Compute specific dataset for model using of metric")
|
|
|
+
|
|
|
+ parser.add_argument('--output', type=str, help='output file name desired (.train and .test)')
|
|
|
+ parser.add_argument('--metrics', type=str,
|
|
|
+ help="list of metrics choice in order to compute data",
|
|
|
+ default='svd_reconstruction, ipca_reconstruction',
|
|
|
+ required=True)
|
|
|
+ parser.add_argument('--params', type=str,
|
|
|
+ help="list of specific param for each metric choice (See README.md for further information in 3D mode)",
|
|
|
+ default='100, 200 :: 50, 25',
|
|
|
+ required=True)
|
|
|
+ parser.add_argument('--scenes', type=str, help='List of scenes to use for training data')
|
|
|
+ parser.add_argument('--nb_zones', type=int, help='Number of zones to use for training data set', choices=list(range(1, 17)))
|
|
|
+ parser.add_argument('--renderer', type=str, help='Renderer choice in order to limit scenes used', choices=cfg.renderer_choices, default='all')
|
|
|
+ parser.add_argument('--random', type=int, help='Data will be randomly filled or not', choices=[0, 1])
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_filename = args.output
|
|
|
+ p_metrics = list(map(str.strip, args.metrics.split(',')))
|
|
|
+ p_params = list(map(str.strip, args.params.split('::')))
|
|
|
+ p_scenes = args.scenes.split(',')
|
|
|
+ p_nb_zones = args.nb_zones
|
|
|
+ p_renderer = args.renderer
|
|
|
+ p_random = args.random
|
|
|
+
|
|
|
+
|
|
|
+ transformations = []
|
|
|
+
|
|
|
+ for id, metric in enumerate(p_metrics):
|
|
|
+
|
|
|
+ if metric not in metric_choices:
|
|
|
+ raise ValueError("Unknown metric, please select a correct metric : ", metric_choices)
|
|
|
+
|
|
|
+ transformations.append(Transformation(metric, p_params[id]))
|
|
|
+
|
|
|
+
|
|
|
+ scenes_list = dt.get_renderer_scenes_names(p_renderer)
|
|
|
+ scenes_indices = dt.get_renderer_scenes_indices(p_renderer)
|
|
|
+
|
|
|
+
|
|
|
+ scenes_selected = []
|
|
|
+
|
|
|
+ for scene_id in p_scenes:
|
|
|
+ index = scenes_indices.index(scene_id.strip())
|
|
|
+ scenes_selected.append(scenes_list[index])
|
|
|
+
|
|
|
+
|
|
|
+ generate_data_model(scenes_list, p_filename, transformations, scenes_selected, p_nb_zones, p_random)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|