Use of an autoencoding model for denoising synthetic images
Jérôme BUISINE 2a9d995fc6 Merge branch 'release/v0.0.4' | vor 5 Jahren | |
---|---|---|
generate | vor 5 Jahren | |
modules @ 7e65b752b6 | vor 5 Jahren | |
.gitignore | vor 5 Jahren | |
.gitmodules | vor 5 Jahren | |
LICENSE | vor 5 Jahren | |
README.md | vor 5 Jahren | |
__init__.py | vor 5 Jahren | |
custom_config.py | vor 5 Jahren | |
dataset | vor 5 Jahren | |
image_denoising.py | vor 5 Jahren | |
requirements.txt | vor 5 Jahren |
Utilisation d'un autoencoder pour apprendre statistiquement comment il est possible de générer une image de synthèse.
Input :
or other information...
Output :
git clone --recursive https://github.com/prise-3d/Thesis-Denoising-autoencoder.git XXXXX
pip install -r requirements.txt
Autoencoder keras documentation
Generate reconstructed data from specific method of reconstruction (run only once time or clean data folder before):
python generate/generate_reconstructed_data.py -h
Generate custom dataset from one reconstructed method or multiples (implemented later)
python generate/generate_dataset.py -h
List of expected parameter by reconstruction method:
Example:
python generate/generate_dataset.py --output data/output_data_filename --metrics "svd_reconstruction, ipca_reconstruction, fast_ica_reconstruction" --renderer "maxwell" --scenes "A, D, G, H" --params "100, 200 :: 50, 10 :: 50" --nb_zones 10 --random 1 --only_noisy 1
Then, run the model:
python image_denoising --data data/my_dataset --output output_model_name