|
@@ -0,0 +1,324 @@
|
|
|
+# main imports
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+import sys, os, argparse
|
|
|
+import subprocess
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+# models imports
|
|
|
+from sklearn.utils import shuffle
|
|
|
+from sklearn.externals import joblib
|
|
|
+from sklearn.metrics import accuracy_score, f1_score, recall_score, roc_auc_score
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+from sklearn.model_selection import StratifiedKFold
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+
|
|
|
+from keras.models import Sequential
|
|
|
+from keras.layers import Conv1D, MaxPooling1D
|
|
|
+from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
|
|
|
+from keras.wrappers.scikit_learn import KerasClassifier
|
|
|
+from keras import backend as K
|
|
|
+from keras.models import model_from_json
|
|
|
+
|
|
|
+# image processing imports
|
|
|
+from ipfml import processing
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+# modules imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+
|
|
|
+# variables and parameters
|
|
|
+threshold_map_folder = cfg.threshold_map_folder
|
|
|
+threshold_map_file_prefix = cfg.threshold_map_folder + "_"
|
|
|
+
|
|
|
+markdowns_folder = cfg.models_information_folder
|
|
|
+final_csv_model_comparisons = cfg.csv_model_comparisons_filename
|
|
|
+models_name = cfg.models_names_list
|
|
|
+
|
|
|
+zones = cfg.zones_indices
|
|
|
+
|
|
|
+current_dirpath = os.getcwd()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ kind_model = 'keras'
|
|
|
+ model_ext = ''
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Display SVD data of scene zone")
|
|
|
+
|
|
|
+ parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
|
|
|
+ parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
|
|
|
+ parser.add_argument('--feature', type=str, help='feature data choice', choices=cfg.features_choices_labels)
|
|
|
+ parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_interval = list(map(int, args.interval.split(',')))
|
|
|
+ p_model_file = args.model
|
|
|
+ p_feature = args.feature
|
|
|
+ p_mode = args.mode
|
|
|
+
|
|
|
+
|
|
|
+ # call model and get global result in scenes
|
|
|
+ begin, end = p_interval
|
|
|
+
|
|
|
+ bash_cmd = "bash others/testModelByScene_maxwell.sh '" + str(begin) + "' '" + str(end) + "' '" + p_model_file + "' '" + p_mode + "' '" + p_feature + "'"
|
|
|
+
|
|
|
+ print(bash_cmd)
|
|
|
+
|
|
|
+ ## call command ##
|
|
|
+ p = subprocess.Popen(bash_cmd, stdout=subprocess.PIPE, shell=True)
|
|
|
+
|
|
|
+ (output, err) = p.communicate()
|
|
|
+
|
|
|
+ ## Wait for result ##
|
|
|
+ p_status = p.wait()
|
|
|
+
|
|
|
+ if not os.path.exists(markdowns_folder):
|
|
|
+ os.makedirs(markdowns_folder)
|
|
|
+
|
|
|
+ # get model name to construct model
|
|
|
+
|
|
|
+ if '.joblib' in p_model_file:
|
|
|
+ kind_model = 'sklearn'
|
|
|
+ model_ext = '.joblib'
|
|
|
+
|
|
|
+ if '.json' in p_model_file:
|
|
|
+ kind_model = 'keras'
|
|
|
+ model_ext = '.json'
|
|
|
+
|
|
|
+ md_model_path = os.path.join(markdowns_folder, p_model_file.split('/')[-1].replace(model_ext, '.md'))
|
|
|
+
|
|
|
+ with open(md_model_path, 'w') as f:
|
|
|
+ f.write(output.decode("utf-8"))
|
|
|
+
|
|
|
+ # read each threshold_map information if exists
|
|
|
+ model_map_info_path = os.path.join(threshold_map_folder, p_model_file.replace('saved_models/', ''))
|
|
|
+
|
|
|
+ if not os.path.exists(model_map_info_path):
|
|
|
+ f.write('\n\n No threshold map information')
|
|
|
+ else:
|
|
|
+ maps_files = os.listdir(model_map_info_path)
|
|
|
+
|
|
|
+ # get all map information
|
|
|
+ for t_map_file in maps_files:
|
|
|
+
|
|
|
+ file_path = os.path.join(model_map_info_path, t_map_file)
|
|
|
+ with open(file_path, 'r') as map_file:
|
|
|
+
|
|
|
+ title_scene = t_map_file.replace(threshold_map_file_prefix, '')
|
|
|
+ f.write('\n\n## ' + title_scene + '\n')
|
|
|
+ content = map_file.readlines()
|
|
|
+
|
|
|
+ # getting each map line information
|
|
|
+ for line in content:
|
|
|
+ f.write(line)
|
|
|
+
|
|
|
+ f.close()
|
|
|
+
|
|
|
+ # Keep model information to compare
|
|
|
+ current_model_name = p_model_file.split('/')[-1].replace(model_ext, '')
|
|
|
+
|
|
|
+ # Prepare writing in .csv file into results folder
|
|
|
+ output_final_file_path = os.path.join(cfg.results_information_folder, final_csv_model_comparisons)
|
|
|
+
|
|
|
+ if not os.path.exists(cfg.results_information_folder):
|
|
|
+ os.makedirs(cfg.results_information_folder)
|
|
|
+
|
|
|
+ output_final_file = open(output_final_file_path, "a")
|
|
|
+
|
|
|
+ print(current_model_name)
|
|
|
+ # reconstruct data filename
|
|
|
+ for name in models_name:
|
|
|
+ if name in current_model_name:
|
|
|
+ data_filename = current_model_name
|
|
|
+ current_data_file_path = os.path.join('data', data_filename)
|
|
|
+
|
|
|
+ print("Current data file ")
|
|
|
+ print(current_data_file_path)
|
|
|
+ model_scores = []
|
|
|
+
|
|
|
+ ########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ########################
|
|
|
+ dataset_train = pd.read_csv(current_data_file_path + '.train', header=None, sep=";")
|
|
|
+ dataset_test = pd.read_csv(current_data_file_path + '.test', header=None, sep=";")
|
|
|
+
|
|
|
+ # default first shuffle of data
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
+
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
+ noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
+ nb_noisy_train = len(noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
+ nb_noisy_test = len(noisy_df_test.index)
|
|
|
+
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
+
|
|
|
+ # shuffle data another time
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
+
|
|
|
+ final_df_train_size = len(final_df_train.index)
|
|
|
+ final_df_test_size = len(final_df_test.index)
|
|
|
+
|
|
|
+ # use of the whole data set for training
|
|
|
+ x_dataset_train = final_df_train.ix[:,1:]
|
|
|
+ x_dataset_test = final_df_test.ix[:,1:]
|
|
|
+
|
|
|
+ y_dataset_train = final_df_train.ix[:,0]
|
|
|
+ y_dataset_test = final_df_test.ix[:,0]
|
|
|
+
|
|
|
+ #######################
|
|
|
+ # 2. Getting model
|
|
|
+ #######################
|
|
|
+
|
|
|
+ if kind_model == 'keras':
|
|
|
+ with open(p_model_file, 'r') as f:
|
|
|
+ json_model = json.load(f)
|
|
|
+ model = model_from_json(json_model)
|
|
|
+ model.load_weights(p_model_file.replace('.json', '.h5'))
|
|
|
+
|
|
|
+ model.compile(loss='binary_crossentropy',
|
|
|
+ optimizer='adam',
|
|
|
+ features=['accuracy'])
|
|
|
+
|
|
|
+ # reshape all input data
|
|
|
+ x_dataset_train = np.array(x_dataset_train).reshape(len(x_dataset_train), end, 1)
|
|
|
+ x_dataset_test = np.array(x_dataset_test).reshape(len(x_dataset_test), end, 1)
|
|
|
+
|
|
|
+
|
|
|
+ if kind_model == 'sklearn':
|
|
|
+ model = joblib.load(p_model_file)
|
|
|
+
|
|
|
+ #######################
|
|
|
+ # 3. Fit model : use of cross validation to fit model
|
|
|
+ #######################
|
|
|
+
|
|
|
+ if kind_model == 'keras':
|
|
|
+ model.fit(x_dataset_train, y_dataset_train, validation_split=0.20, epochs=cfg.keras_epochs, batch_size=cfg.keras_batch)
|
|
|
+
|
|
|
+ if kind_model == 'sklearn':
|
|
|
+ model.fit(x_dataset_train, y_dataset_train)
|
|
|
+
|
|
|
+ train_accuracy = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
|
|
|
+
|
|
|
+ ######################
|
|
|
+ # 4. Test : Validation and test dataset from .test dataset
|
|
|
+ ######################
|
|
|
+
|
|
|
+ # we need to specify validation size to 20% of whole dataset
|
|
|
+ val_set_size = int(final_df_train_size/3)
|
|
|
+ test_set_size = val_set_size
|
|
|
+
|
|
|
+ total_validation_size = val_set_size + test_set_size
|
|
|
+
|
|
|
+ if final_df_test_size > total_validation_size:
|
|
|
+ x_dataset_test = x_dataset_test[0:total_validation_size]
|
|
|
+ y_dataset_test = y_dataset_test[0:total_validation_size]
|
|
|
+
|
|
|
+ X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
|
|
|
+
|
|
|
+ if kind_model == 'keras':
|
|
|
+ y_test_model = model.predict_classes(X_test)
|
|
|
+ y_val_model = model.predict_classes(X_val)
|
|
|
+
|
|
|
+ y_train_model = model.predict_classes(x_dataset_train)
|
|
|
+
|
|
|
+ train_accuracy = accuracy_score(y_dataset_train, y_train_model)
|
|
|
+
|
|
|
+ if kind_model == 'sklearn':
|
|
|
+ y_test_model = model.predict(X_test)
|
|
|
+ y_val_model = model.predict(X_val)
|
|
|
+
|
|
|
+ y_train_model = model.predict(x_dataset_train)
|
|
|
+
|
|
|
+ val_accuracy = accuracy_score(y_val, y_val_model)
|
|
|
+ test_accuracy = accuracy_score(y_test, y_test_model)
|
|
|
+
|
|
|
+ train_f1 = f1_score(y_dataset_train, y_train_model)
|
|
|
+ train_recall = recall_score(y_dataset_train, y_train_model)
|
|
|
+ train_roc_auc = roc_auc_score(y_dataset_train, y_train_model)
|
|
|
+
|
|
|
+ val_f1 = f1_score(y_val, y_val_model)
|
|
|
+ val_recall = recall_score(y_val, y_val_model)
|
|
|
+ val_roc_auc = roc_auc_score(y_val, y_val_model)
|
|
|
+
|
|
|
+ test_f1 = f1_score(y_test, y_test_model)
|
|
|
+ test_recall = recall_score(y_test, y_test_model)
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
+
|
|
|
+ if kind_model == 'keras':
|
|
|
+ # stats of all dataset
|
|
|
+ all_x_data = np.concatenate([x_dataset_train, X_test, X_val])
|
|
|
+ all_y_data = np.concatenate([y_dataset_train, y_test, y_val])
|
|
|
+ all_y_model = model.predict_classes(all_x_data)
|
|
|
+
|
|
|
+ if kind_model == 'sklearn':
|
|
|
+ # stats of all dataset
|
|
|
+ all_x_data = pd.concat([x_dataset_train, X_test, X_val])
|
|
|
+ all_y_data = pd.concat([y_dataset_train, y_test, y_val])
|
|
|
+ all_y_model = model.predict(all_x_data)
|
|
|
+
|
|
|
+ all_accuracy = accuracy_score(all_y_data, all_y_model)
|
|
|
+ all_f1_score = f1_score(all_y_data, all_y_model)
|
|
|
+ all_recall_score = recall_score(all_y_data, all_y_model)
|
|
|
+ all_roc_auc_score = roc_auc_score(all_y_data, all_y_model)
|
|
|
+
|
|
|
+ # stats of dataset sizes
|
|
|
+ total_samples = final_df_train_size + val_set_size + test_set_size
|
|
|
+
|
|
|
+ model_scores.append(final_df_train_size)
|
|
|
+ model_scores.append(val_set_size)
|
|
|
+ model_scores.append(test_set_size)
|
|
|
+
|
|
|
+ model_scores.append(final_df_train_size / total_samples)
|
|
|
+ model_scores.append(val_set_size / total_samples)
|
|
|
+ model_scores.append(test_set_size / total_samples)
|
|
|
+
|
|
|
+ # add of scores
|
|
|
+ model_scores.append(train_accuracy)
|
|
|
+ model_scores.append(val_accuracy)
|
|
|
+ model_scores.append(test_accuracy)
|
|
|
+ model_scores.append(all_accuracy)
|
|
|
+
|
|
|
+ model_scores.append(train_f1)
|
|
|
+ model_scores.append(train_recall)
|
|
|
+ model_scores.append(train_roc_auc)
|
|
|
+
|
|
|
+ model_scores.append(val_f1)
|
|
|
+ model_scores.append(val_recall)
|
|
|
+ model_scores.append(val_roc_auc)
|
|
|
+
|
|
|
+ model_scores.append(test_f1)
|
|
|
+ model_scores.append(test_recall)
|
|
|
+ model_scores.append(test_roc_auc)
|
|
|
+
|
|
|
+ model_scores.append(all_f1_score)
|
|
|
+ model_scores.append(all_recall_score)
|
|
|
+ model_scores.append(all_roc_auc_score)
|
|
|
+
|
|
|
+ # TODO : improve...
|
|
|
+ # check if it's always the case...
|
|
|
+ nb_zones = current_data_file_path.split('_')[7]
|
|
|
+
|
|
|
+ final_file_line = current_model_name + '; ' + str(end - begin) + '; ' + str(begin) + '; ' + str(end) + '; ' + str(nb_zones) + '; ' + p_feature + '; ' + p_mode
|
|
|
+
|
|
|
+ for s in model_scores:
|
|
|
+ final_file_line += '; ' + str(s)
|
|
|
+
|
|
|
+ output_final_file.write(final_file_line + '\n')
|
|
|
+
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|