123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # main imports
- import numpy as np
- import pandas as pd
- import sys, os, argparse
- import subprocess
- import time
- import json
- # models imports
- from sklearn.utils import shuffle
- from sklearn.externals import joblib
- from sklearn.metrics import accuracy_score, f1_score, recall_score, roc_auc_score
- from sklearn.model_selection import cross_val_score
- from sklearn.model_selection import StratifiedKFold
- from sklearn.model_selection import train_test_split
- # image processing imports
- from ipfml import processing
- from PIL import Image
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- # variables and parameters
- threshold_map_folder = cfg.threshold_map_folder
- threshold_map_file_prefix = cfg.threshold_map_folder + "_"
- markdowns_folder = cfg.models_information_folder
- final_csv_model_comparisons = cfg.csv_model_comparisons_filename
- models_name = cfg.models_names_list
- zones = cfg.zones_indices
- current_dirpath = os.getcwd()
- def main():
-
- parser = argparse.ArgumentParser(description="Save data results of learned model")
- parser.add_argument('--data', type=str, help='Interval value to keep from svd', default='"0, 200"')
- parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
- parser.add_argument('--choice', type=str, help='Name of the model used', choices=cfg.models_names_list)
- parser.add_argument('--zones', type=int, help='Number of zones used when learning')
- parser.add_argument('--feature', type=str, help='feature data choice', choices=cfg.features_choices_labels)
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices)
- args = parser.parse_args()
- p_data_file = args.data
- p_model_file = args.model
- p_model_name = args.choice
- p_zones = args.zones
- p_feature = args.feature
- p_mode = args.mode
- model_scores = []
- ########################
- # 1. Get and prepare data
- ########################
- dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- #######################
- # 2. Getting model
- #######################
- model = joblib.load(p_model_file)
- selected_indices = [(i + 1) for i in np.arange(len(model.support_)) if model.support_[i] == True]
- selected_indices_displayed = [i for i in np.arange(len(model.support_)) if model.support_[i] == True]
- print(selected_indices)
-
- # update dataset values using specific indices
- x_dataset_train = x_dataset_train.loc[:, selected_indices]
- x_dataset_test = x_dataset_test.loc[:, selected_indices]
- #######################
- # 3. Fit model : use of cross validation to fit model
- #######################
- model.estimator_.fit(x_dataset_train, y_dataset_train)
- train_accuracy = cross_val_score(model.estimator_, x_dataset_train, y_dataset_train, cv=5)
- ######################
- # 4. Test : Validation and test dataset from .test dataset
- ######################
- # we need to specify validation size to 20% of whole dataset
- val_set_size = int(final_df_train_size/3)
- test_set_size = val_set_size
- total_validation_size = val_set_size + test_set_size
- if final_df_test_size > total_validation_size:
- x_dataset_test = x_dataset_test[0:total_validation_size]
- y_dataset_test = y_dataset_test[0:total_validation_size]
- X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
- # update dataset values using specific indices
- y_test_model = model.estimator_.predict(X_test)
- y_val_model = model.estimator_.predict(X_val)
- y_train_model = model.estimator_.predict(x_dataset_train)
- # getting all scores
- val_accuracy = accuracy_score(y_val, y_val_model)
- test_accuracy = accuracy_score(y_test, y_test_model)
- train_f1 = f1_score(y_dataset_train, y_train_model)
- train_recall = recall_score(y_dataset_train, y_train_model)
- train_roc_auc = roc_auc_score(y_dataset_train, y_train_model)
- val_f1 = f1_score(y_val, y_val_model)
- val_recall = recall_score(y_val, y_val_model)
- val_roc_auc = roc_auc_score(y_val, y_val_model)
- test_f1 = f1_score(y_test, y_test_model)
- test_recall = recall_score(y_test, y_test_model)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
- all_x_data = pd.concat([x_dataset_train, X_test, X_val])
- all_y_data = pd.concat([y_dataset_train, y_test, y_val])
- all_y_model = model.estimator_.predict(all_x_data)
- all_accuracy = accuracy_score(all_y_data, all_y_model)
- all_f1_score = f1_score(all_y_data, all_y_model)
- all_recall_score = recall_score(all_y_data, all_y_model)
- all_roc_auc_score = roc_auc_score(all_y_data, all_y_model)
- # stats of dataset sizes
- total_samples = final_df_train_size + val_set_size + test_set_size
- model_scores.append(final_df_train_size)
- model_scores.append(val_set_size)
- model_scores.append(test_set_size)
- model_scores.append(final_df_train_size / total_samples)
- model_scores.append(val_set_size / total_samples)
- model_scores.append(test_set_size / total_samples)
- # add of scores
- model_scores.append(train_accuracy)
- model_scores.append(val_accuracy)
- model_scores.append(test_accuracy)
- model_scores.append(all_accuracy)
- model_scores.append(train_f1)
- model_scores.append(train_recall)
- model_scores.append(train_roc_auc)
- model_scores.append(val_f1)
- model_scores.append(val_recall)
- model_scores.append(val_roc_auc)
- model_scores.append(test_f1)
- model_scores.append(test_recall)
- model_scores.append(test_roc_auc)
- model_scores.append(all_f1_score)
- model_scores.append(all_recall_score)
- model_scores.append(all_roc_auc_score)
- # add final line into data
- final_file_line = p_model_name + ';' + str(selected_indices_displayed) + '; ' + str(p_zones) + '; ' + p_feature + '; ' + p_mode
- for s in model_scores:
- final_file_line += '; ' + str(s)
-
- # Prepare writing in .csv file into results folder
- output_final_file_path = os.path.join(cfg.results_information_folder, final_csv_model_comparisons)
-
- if not os.path.exists(cfg.results_information_folder):
- os.makedirs(cfg.results_information_folder)
- output_final_file = open(output_final_file_path, "a")
- output_final_file.write(final_file_line + '\n')
- if __name__== "__main__":
- main()
|