123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # main imports
- import sys, os, argparse
- import numpy as np
- import json
- import pandas as pd
- # models imports
- from sklearn.externals import joblib
- from sklearn.metrics import accuracy_score
- from keras.models import Sequential
- from keras.layers import Conv1D, MaxPooling1D
- from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
- from keras import backend as K
- from keras.models import model_from_json
- from keras.wrappers.scikit_learn import KerasClassifier
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- # parameters and variables
- output_model_folder = cfg.saved_models_folder
- def main():
-
- parser = argparse.ArgumentParser(description="Give model performance on specific scene")
- parser.add_argument('--data', type=str, help='dataset filename prefix of specific scene (without .train and .test)')
- parser.add_argument('--model', type=str, help='saved model (Keras or SKlearn) filename with extension')
- parser.add_argument('--output', type=str, help="filename to store predicted and performance model obtained on scene")
- parser.add_argument('--scene', type=str, help="scene indice to predict", choices=cfg.scenes_indices)
- args = parser.parse_args()
- p_data_file = args.data
- p_model_file = args.model
- p_output = args.output
- p_scene = args.scene
- if '.joblib' in p_model_file:
- kind_model = 'sklearn'
- model_ext = '.joblib'
- if '.json' in p_model_file:
- kind_model = 'keras'
- model_ext = '.json'
- if not os.path.exists(output_model_folder):
- os.makedirs(output_model_folder)
- dataset = pd.read_csv(p_data_file, header=None, sep=";")
- y_dataset = dataset.ix[:,0]
- x_dataset = dataset.ix[:,1:]
- noisy_dataset = dataset[dataset.ix[:, 0] == 1]
- not_noisy_dataset = dataset[dataset.ix[:, 0] == 0]
- y_noisy_dataset = noisy_dataset.ix[:, 0]
- x_noisy_dataset = noisy_dataset.ix[:, 1:]
- y_not_noisy_dataset = not_noisy_dataset.ix[:, 0]
- x_not_noisy_dataset = not_noisy_dataset.ix[:, 1:]
- if kind_model == 'keras':
- with open(p_model_file, 'r') as f:
- json_model = json.load(f)
- model = model_from_json(json_model)
- model.load_weights(p_model_file.replace('.json', '.h5'))
- model.compile(loss='binary_crossentropy',
- optimizer='adam',
- metrics=['accuracy'])
- _, vector_size = np.array(x_dataset).shape
- # reshape all data
- x_dataset = np.array(x_dataset).reshape(len(x_dataset), vector_size, 1)
- x_noisy_dataset = np.array(x_noisy_dataset).reshape(len(x_noisy_dataset), vector_size, 1)
- x_not_noisy_dataset = np.array(x_not_noisy_dataset).reshape(len(x_not_noisy_dataset), vector_size, 1)
- if kind_model == 'sklearn':
- # use of rfe sklearn model
- if p_model_file in 'rfe_svm_model':
- rfe_model = joblib.load(p_model_file)
- model = rfe_model.estimator_
- indices = rfe_model.support_
- selected_indices = [(i+1) for i in np.arange(len(indices)) if indices[i] == True]
- x_dataset = x_dataset.loc[:, selected_indices]
- x_noisy_dataset = x_noisy_dataset.loc[:, selected_indices]
- x_not_noisy_dataset = x_not_noisy_dataset.loc[:, selected_indices]
- else:
- model = joblib.load(p_model_file)
- if kind_model == 'keras':
- y_pred = model.predict_classes(x_dataset)
- y_noisy_pred = model.predict_classes(x_noisy_dataset)
- y_not_noisy_pred = model.predict_classes(x_not_noisy_dataset)
- if kind_model == 'sklearn':
- y_pred = model.predict(x_dataset)
- y_noisy_pred = model.predict(x_noisy_dataset)
- y_not_noisy_pred = model.predict(x_not_noisy_dataset)
- accuracy_global = accuracy_score(y_dataset, y_pred)
- accuracy_noisy = accuracy_score(y_noisy_dataset, y_noisy_pred)
- accuracy_not_noisy = accuracy_score(y_not_noisy_dataset, y_not_noisy_pred)
- if(p_scene):
- print(p_scene + " | " + str(accuracy_global) + " | " + str(accuracy_noisy) + " | " + str(accuracy_not_noisy))
- else:
- print(str(accuracy_global) + " \t | " + str(accuracy_noisy) + " \t | " + str(accuracy_not_noisy))
- with open(p_output, 'w') as f:
- f.write("Global accuracy found %s " % str(accuracy_global))
- f.write("Noisy accuracy found %s " % str(accuracy_noisy))
- f.write("Not noisy accuracy found %s " % str(accuracy_not_noisy))
- for prediction in y_pred:
- f.write(str(prediction) + '\n')
- if __name__== "__main__":
- main()
|