|
@@ -0,0 +1,143 @@
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import argparse
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import logging
|
|
|
+
|
|
|
+# model imports
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
+
|
|
|
+import sklearn.svm as svm
|
|
|
+from sklearn.utils import shuffle
|
|
|
+from sklearn.externals import joblib
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+
|
|
|
+# modules and config imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+import models as mdl
|
|
|
+
|
|
|
+from optimization.algorithms.IteratedLocalSearch import IteratedLocalSearch as ILS
|
|
|
+from optimization.solutions.BinarySolution import BinarySolution
|
|
|
+
|
|
|
+from optimization.updators.mutators.SimpleMutation import SimpleMutation, SimpleBinaryMutation
|
|
|
+from optimization.updators.policies.RandomPolicy import RandomPolicy
|
|
|
+
|
|
|
+# variables and parameters
|
|
|
+models_list = cfg.models_names_list
|
|
|
+number_of_values = 26
|
|
|
+
|
|
|
+# default validator
|
|
|
+def validator(solution):
|
|
|
+
|
|
|
+ if list(solution.data).count(1) < 5:
|
|
|
+ return False
|
|
|
+
|
|
|
+ return True
|
|
|
+
|
|
|
+# init solution (13 filters)
|
|
|
+def init():
|
|
|
+ return BinarySolution([], 13).random(validator)
|
|
|
+
|
|
|
+def loadDataset(filename):
|
|
|
+
|
|
|
+ ########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ########################
|
|
|
+ dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
|
|
|
+ dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
|
|
|
+
|
|
|
+ # default first shuffle of data
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
+
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
+ noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
|
|
|
+ nb_noisy_train = len(noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
|
|
|
+ nb_noisy_test = len(noisy_df_test.index)
|
|
|
+
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
+
|
|
|
+ # shuffle data another time
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
+
|
|
|
+ # use of the whole data set for training
|
|
|
+ x_dataset_train = final_df_train.iloc[:,1:]
|
|
|
+ x_dataset_test = final_df_test.iloc[:,1:]
|
|
|
+
|
|
|
+ y_dataset_train = final_df_train.iloc[:,0]
|
|
|
+ y_dataset_test = final_df_test.iloc[:,0]
|
|
|
+
|
|
|
+ return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
|
|
|
+
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)')
|
|
|
+ parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_data_file = args.data
|
|
|
+ p_choice = args.choice
|
|
|
+
|
|
|
+ # load data from file
|
|
|
+ x_train, y_train, x_test, y_test = loadDataset(p_data_file)
|
|
|
+
|
|
|
+ # create `logs` folder if necessary
|
|
|
+ if not os.path.exists(cfg.logs_folder):
|
|
|
+ os.makedirs(cfg.logs_folder)
|
|
|
+
|
|
|
+ logging.basicConfig(format='%(asctime)s %(message)s', filename='logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
|
|
|
+
|
|
|
+ # define evaluate function here (need of data information)
|
|
|
+ def evaluate(solution):
|
|
|
+
|
|
|
+ # get indices of filters data to use (filters selection from solution)
|
|
|
+ indices = []
|
|
|
+
|
|
|
+ for index, value in enumerate(solution.data):
|
|
|
+ if value == 1:
|
|
|
+ indices.append(index*2)
|
|
|
+ indices.append(index*2+1)
|
|
|
+
|
|
|
+ # keep only selected filters from solution
|
|
|
+ x_train_filters = x_train.iloc[:, indices]
|
|
|
+ y_train_filters = y_train
|
|
|
+ x_test_filters = x_test.iloc[:, indices]
|
|
|
+
|
|
|
+ model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
|
|
|
+
|
|
|
+ y_test_model = model.predict(x_test_filters)
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
+
|
|
|
+ return test_roc_auc
|
|
|
+
|
|
|
+ # prepare optimization algorithm
|
|
|
+ updators = [SimpleBinaryMutation, SimpleMutation]
|
|
|
+ policy = RandomPolicy(updators)
|
|
|
+
|
|
|
+ algo = ILS(init, evaluate, updators, policy, validator, True)
|
|
|
+
|
|
|
+ bestSol = algo.run(100, 10)
|
|
|
+
|
|
|
+ # print best solution found
|
|
|
+ print("Found ", bestSol)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|