|
@@ -173,10 +173,10 @@ class ILSSurrogate(Algorithm):
|
|
|
# using randomly generated solutions (in order to cover seearch space)
|
|
|
while self._start_train_surrogate > self.getGlobalEvaluation():
|
|
|
|
|
|
- newSolution = self._initializer()
|
|
|
+ newSolution = self.initializer()
|
|
|
|
|
|
# evaluate new solution
|
|
|
- newSolution.evaluate(self._evaluator)
|
|
|
+ newSolution.evaluate(self.evaluator)
|
|
|
|
|
|
# add it to surrogate pool
|
|
|
self.add_to_surrogate(newSolution)
|
|
@@ -191,15 +191,15 @@ class ILSSurrogate(Algorithm):
|
|
|
while not self.stop():
|
|
|
|
|
|
# set current evaluator based on used or not of surrogate function
|
|
|
- self._evaluator = self._surrogate_evaluator if self._start_train_surrogate <= self.getGlobalEvaluation() else self._main_evaluator
|
|
|
+ self.evaluator = self._surrogate_evaluator if self._start_train_surrogate <= self.getGlobalEvaluation() else self._main_evaluator
|
|
|
|
|
|
# create new local search instance
|
|
|
# passing global evaluation param from ILS
|
|
|
- ls = LocalSearchSurrogate(self._initializer,
|
|
|
- self._evaluator,
|
|
|
+ ls = LocalSearchSurrogate(self.initializer,
|
|
|
+ self.evaluator,
|
|
|
self._operators,
|
|
|
- self._policy,
|
|
|
- self._validator,
|
|
|
+ self.policy,
|
|
|
+ self.validator,
|
|
|
self._maximise,
|
|
|
parent=self)
|
|
|
|
|
@@ -224,7 +224,7 @@ class ILSSurrogate(Algorithm):
|
|
|
|
|
|
# if solution is really better after real evaluation, then we replace
|
|
|
if self.isBetter(newSolution):
|
|
|
- self._bestSolution = newSolution
|
|
|
+ self.result = newSolution
|
|
|
|
|
|
self.add_to_surrogate(newSolution)
|
|
|
|