|
@@ -0,0 +1,146 @@
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import argparse
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import logging
|
|
|
+import datetime
|
|
|
+
|
|
|
+# model imports
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
+
|
|
|
+import joblib
|
|
|
+import sklearn.svm as svm
|
|
|
+from sklearn.utils import shuffle
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+from sklearn.feature_selection import SelectFromModel
|
|
|
+from sklearn.ensemble import ExtraTreesClassifier
|
|
|
+# modules and config imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+import models as mdl
|
|
|
+
|
|
|
+# variables and parameters
|
|
|
+models_list = cfg.models_names_list
|
|
|
+number_of_values = 30
|
|
|
+ils_iteration = 4000
|
|
|
+ls_iteration = 10
|
|
|
+
|
|
|
+# default validator
|
|
|
+def validator(solution):
|
|
|
+
|
|
|
+ if list(solution.data).count(1) < 5:
|
|
|
+ return False
|
|
|
+
|
|
|
+ return True
|
|
|
+
|
|
|
+def loadDataset(filename):
|
|
|
+
|
|
|
+ ########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ########################
|
|
|
+ dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
|
|
|
+ dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
|
|
|
+
|
|
|
+ # default first shuffle of data
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
+
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
+ noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
|
|
|
+ #nb_noisy_train = len(noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
|
|
|
+ #nb_noisy_test = len(noisy_df_test.index)
|
|
|
+
|
|
|
+ # use of all data
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
|
|
|
+
|
|
|
+ # shuffle data another time
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
+
|
|
|
+ # use of the whole data set for training
|
|
|
+ x_dataset_train = final_df_train.iloc[:,1:]
|
|
|
+ x_dataset_test = final_df_test.iloc[:,1:]
|
|
|
+
|
|
|
+ y_dataset_train = final_df_train.iloc[:,0]
|
|
|
+ y_dataset_test = final_df_test.iloc[:,0]
|
|
|
+
|
|
|
+ return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
|
|
|
+
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
|
|
|
+ parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, required=True)
|
|
|
+ parser.add_argument('--length', type=str, help='max data length (need to be specify for evaluator)', required=True)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_data_file = args.data
|
|
|
+ p_choice = args.choice
|
|
|
+ p_length = args.length
|
|
|
+
|
|
|
+ print(p_data_file)
|
|
|
+
|
|
|
+ # load data from file
|
|
|
+ x_train, y_train, x_test, y_test = loadDataset(p_data_file)
|
|
|
+
|
|
|
+
|
|
|
+ # clf = ExtraTreesClassifier(n_estimators=100)
|
|
|
+ # clf = clf.fit(x_train, y_train)
|
|
|
+ # print(clf.feature_importances_)
|
|
|
+
|
|
|
+
|
|
|
+ for i in (np.arange(11) + 5):
|
|
|
+
|
|
|
+
|
|
|
+ model = SelectFromModel(ExtraTreesClassifier(n_estimators=100), max_features=i)
|
|
|
+ selector = model.fit(x_train, y_train)
|
|
|
+
|
|
|
+ binary_selection = [ 0 if x < selector.threshold_ else 1 for x in selector.estimator_.feature_importances_ ]
|
|
|
+ X_train_new = selector.transform(x_train)
|
|
|
+ X_test_new = selector.transform(x_test)
|
|
|
+
|
|
|
+ print('Shape for {}, is now {}'.format(i, X_train_new.shape))
|
|
|
+
|
|
|
+ svm_model = mdl.get_trained_model(p_choice, X_train_new, y_train)
|
|
|
+
|
|
|
+ y_test_model = svm_model.predict(X_test_new)
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
+
|
|
|
+ with open('data/results/selectFromModel.csv', 'a') as f:
|
|
|
+ line += str(len(binary_selection)) + ';'
|
|
|
+ line += str(test_roc_auc) + ';'
|
|
|
+
|
|
|
+ for index, b in enumerate(binary_selection):
|
|
|
+
|
|
|
+ line += str(b)
|
|
|
+ if index < len(binary_selection) - 1:
|
|
|
+ line += ','
|
|
|
+
|
|
|
+ f.write(line + '\n')
|
|
|
+
|
|
|
+ # create `logs` folder if necessary
|
|
|
+ if not os.path.exists(cfg.output_logs_folder):
|
|
|
+ os.makedirs(cfg.output_logs_folder)
|
|
|
+
|
|
|
+ logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
|
|
|
+
|
|
|
+ # init solution (`n` attributes)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|