|
@@ -0,0 +1,316 @@
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import argparse
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import logging
|
|
|
+import datetime
|
|
|
+import random
|
|
|
+
|
|
|
+# model imports
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
+
|
|
|
+from keras.layers import Dense, Dropout, LSTM, Embedding, GRU, BatchNormalization
|
|
|
+from keras.preprocessing.sequence import pad_sequences
|
|
|
+from keras.models import Sequential
|
|
|
+
|
|
|
+import joblib
|
|
|
+import sklearn
|
|
|
+import sklearn.svm as svm
|
|
|
+from sklearn.utils import shuffle
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+
|
|
|
+# modules and config imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+import models as mdl
|
|
|
+
|
|
|
+from optimization.ILSSurrogate import ILSSurrogate
|
|
|
+from macop.solutions.BinarySolution import BinarySolution
|
|
|
+
|
|
|
+from macop.operators.mutators.SimpleMutation import SimpleMutation
|
|
|
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
|
|
|
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
|
|
|
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
|
|
|
+
|
|
|
+from macop.operators.policies.UCBPolicy import UCBPolicy
|
|
|
+
|
|
|
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
|
|
|
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
|
|
|
+
|
|
|
+from sklearn.ensemble import RandomForestClassifier
|
|
|
+
|
|
|
+# variables and parameters
|
|
|
+models_list = cfg.models_names_list
|
|
|
+
|
|
|
+def build_input(df):
|
|
|
+ """Convert dataframe to numpy array input with timesteps as float array
|
|
|
+
|
|
|
+ Arguments:
|
|
|
+ df: {pd.Dataframe} -- Dataframe input
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ {np.ndarray} -- input LSTM data as numpy array
|
|
|
+ """
|
|
|
+
|
|
|
+ arr = df.to_numpy()
|
|
|
+
|
|
|
+ final_arr = []
|
|
|
+ for v in arr:
|
|
|
+ v_data = []
|
|
|
+ for vv in v:
|
|
|
+ #scaled_vv = np.array(vv, 'float') - np.mean(np.array(vv, 'float'))
|
|
|
+ #v_data.append(scaled_vv)
|
|
|
+ v_data.append(vv)
|
|
|
+
|
|
|
+ final_arr.append(v_data)
|
|
|
+
|
|
|
+ final_arr = np.array(final_arr, 'float32')
|
|
|
+
|
|
|
+ return final_arr
|
|
|
+
|
|
|
+# default validator
|
|
|
+def validator(solution):
|
|
|
+
|
|
|
+ # at least 5 attributes
|
|
|
+ if list(solution.data).count(1) < 5:
|
|
|
+ return False
|
|
|
+
|
|
|
+ return True
|
|
|
+
|
|
|
+def create_model(input_shape):
|
|
|
+ print ('Creating model...')
|
|
|
+ model = Sequential()
|
|
|
+ #model.add(Embedding(input_dim = 1000, output_dim = 50, input_length=input_length))
|
|
|
+ model.add(LSTM(input_shape=input_shape, units=512, activation='tanh', recurrent_activation='sigmoid', dropout=0.4, return_sequences=True))
|
|
|
+ model.add(LSTM(units=128, activation='tanh', recurrent_activation='sigmoid', dropout=0.4, return_sequences=True))
|
|
|
+ model.add(LSTM(units=32, activation='tanh', dropout=0.4, recurrent_activation='sigmoid'))
|
|
|
+ model.add(Dense(1, activation='sigmoid'))
|
|
|
+
|
|
|
+ print ('Compiling...')
|
|
|
+ model.compile(loss='binary_crossentropy',
|
|
|
+ optimizer='rmsprop',
|
|
|
+ #metrics=['accuracy', tf.keras.metrics.AUC()])
|
|
|
+ metrics=['accuracy'])
|
|
|
+
|
|
|
+ return model
|
|
|
+
|
|
|
+def loadDataset(filename):
|
|
|
+
|
|
|
+ # TODO : load data using DL RNN
|
|
|
+
|
|
|
+ ########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ########################
|
|
|
+ dataset_train = pd.read_csv(filename + '.train', header=None, sep=';')
|
|
|
+ dataset_test = pd.read_csv(filename + '.test', header=None, sep=';')
|
|
|
+
|
|
|
+ # getting weighted class over the whole dataset
|
|
|
+ # line is composed of :: [scene_name; zone_id; image_index_end; label; data]
|
|
|
+ noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
|
|
|
+ nb_noisy_train = len(noisy_df_train.index)
|
|
|
+ nb_not_noisy_train = len(not_noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
|
|
|
+ nb_noisy_test = len(noisy_df_test.index)
|
|
|
+ nb_not_noisy_test = len(not_noisy_df_test.index)
|
|
|
+
|
|
|
+ noisy_samples = nb_noisy_test + nb_noisy_train
|
|
|
+ not_noisy_samples = nb_not_noisy_test + nb_not_noisy_train
|
|
|
+
|
|
|
+ total_samples = noisy_samples + not_noisy_samples
|
|
|
+
|
|
|
+ print('noisy', noisy_samples)
|
|
|
+ print('not_noisy', not_noisy_samples)
|
|
|
+ print('total', total_samples)
|
|
|
+
|
|
|
+ class_weight = {
|
|
|
+ 0: noisy_samples / float(total_samples),
|
|
|
+ 1: (not_noisy_samples / float(total_samples)),
|
|
|
+ }
|
|
|
+
|
|
|
+ # shuffle data
|
|
|
+ final_df_train = sklearn.utils.shuffle(dataset_train)
|
|
|
+ final_df_test = sklearn.utils.shuffle(dataset_test)
|
|
|
+
|
|
|
+ # split dataset into X_train, y_train, X_test, y_test
|
|
|
+ X_train_all = final_df_train.loc[:, 4:].apply(lambda x: x.astype(str).str.split(' '))
|
|
|
+ X_train_all = build_input(X_train_all)
|
|
|
+ y_train_all = final_df_train.loc[:, 3].astype('int')
|
|
|
+
|
|
|
+ X_test = final_df_test.loc[:, 4:].apply(lambda x: x.astype(str).str.split(' '))
|
|
|
+ X_test = build_input(X_test)
|
|
|
+ y_test = final_df_test.loc[:, 3].astype('int')
|
|
|
+
|
|
|
+ input_shape = (X_train_all.shape[1], X_train_all.shape[2])
|
|
|
+ print('Training data input shape', input_shape)
|
|
|
+
|
|
|
+ # prepare train and validation dataset
|
|
|
+ X_train, X_val, y_train, y_val = train_test_split(X_train_all, y_train_all, test_size=0.3, shuffle=False)
|
|
|
+
|
|
|
+ return X_train, X_val, y_train, y_val, X_test, y_test, class_weight
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
|
|
|
+
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
|
|
|
+ parser.add_argument('--start_surrogate', type=int, help='number of evalution before starting surrogare model', default=100)
|
|
|
+ parser.add_argument('--length', type=int, help='max data length (need to be specify for evaluator)', required=True)
|
|
|
+ parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
|
|
|
+ parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
|
|
|
+ parser.add_argument('--output', type=str, help='output surrogate model name')
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_data_file = args.data
|
|
|
+ p_length = args.length
|
|
|
+ p_start = args.start_surrogate
|
|
|
+ p_ils_iteration = args.ils
|
|
|
+ p_ls_iteration = args.ls
|
|
|
+ p_output = args.output
|
|
|
+
|
|
|
+ print(p_data_file)
|
|
|
+
|
|
|
+ # load data from file
|
|
|
+ X_train, X_val, y_train, y_val, X_test, y_test, class_weight = loadDataset(p_data_file)
|
|
|
+
|
|
|
+ # create `logs` folder if necessary
|
|
|
+ if not os.path.exists(cfg.output_logs_folder):
|
|
|
+ os.makedirs(cfg.output_logs_folder)
|
|
|
+
|
|
|
+ logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG)
|
|
|
+
|
|
|
+ # init solution (`n` attributes)
|
|
|
+ def init():
|
|
|
+ return BinarySolution([], p_length).random(validator)
|
|
|
+
|
|
|
+ # define evaluate function here (need of data information)
|
|
|
+ def evaluate(solution):
|
|
|
+
|
|
|
+ start = datetime.datetime.now()
|
|
|
+
|
|
|
+ # get indices of filters data to use (filters selection from solution)
|
|
|
+ indices = []
|
|
|
+
|
|
|
+ for index, value in enumerate(solution.data):
|
|
|
+ if value == 1:
|
|
|
+ indices.append(index)
|
|
|
+
|
|
|
+ # keep only selected filters from solution
|
|
|
+ x_train_filters = X_train[:, :, indices]
|
|
|
+ x_val_filters = X_val[:, :, indices]
|
|
|
+ x_test_filters = X_test[:, :, indices]
|
|
|
+
|
|
|
+ # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
|
|
|
+
|
|
|
+ # model = RandomForestClassifier(n_estimators=10)
|
|
|
+ input_shape = (x_train_filters.shape[1], x_train_filters.shape[2])
|
|
|
+ print('Training data input shape', input_shape)
|
|
|
+ model = create_model(input_shape)
|
|
|
+ model.summary()
|
|
|
+
|
|
|
+ # model = model.fit(x_train_filters, y_train_filters)
|
|
|
+
|
|
|
+ print("Fitting model with custom class_weight", class_weight)
|
|
|
+ history = model.fit(x_train_filters, y_train, batch_size=128, epochs=30, validation_data=(x_val_filters, y_val), verbose=1, shuffle=True, class_weight=class_weight)
|
|
|
+
|
|
|
+
|
|
|
+ y_test_model = model.predict(x_test_filters)
|
|
|
+ y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_predict)
|
|
|
+
|
|
|
+ end = datetime.datetime.now()
|
|
|
+
|
|
|
+ diff = end - start
|
|
|
+
|
|
|
+ print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
|
|
|
+
|
|
|
+ return test_roc_auc
|
|
|
+
|
|
|
+
|
|
|
+ # build all output folder and files based on `output` name
|
|
|
+ backup_model_folder = os.path.join(cfg.output_backup_folder, p_output)
|
|
|
+ surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output)
|
|
|
+ surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output)
|
|
|
+
|
|
|
+ if not os.path.exists(backup_model_folder):
|
|
|
+ os.makedirs(backup_model_folder)
|
|
|
+
|
|
|
+ if not os.path.exists(cfg.output_surrogates_model_folder):
|
|
|
+ os.makedirs(cfg.output_surrogates_model_folder)
|
|
|
+
|
|
|
+ if not os.path.exists(cfg.output_surrogates_data_folder):
|
|
|
+ os.makedirs(cfg.output_surrogates_data_folder)
|
|
|
+
|
|
|
+ backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
|
|
|
+ ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
|
|
|
+
|
|
|
+ # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
|
|
|
+ operators = [SimpleBinaryMutation(), SimpleMutation()]
|
|
|
+ policy = UCBPolicy(operators)
|
|
|
+
|
|
|
+ # define first line if necessary
|
|
|
+ if not os.path.exists(surrogate_output_data):
|
|
|
+ folder, _ = os.path.split(surrogate_output_data)
|
|
|
+
|
|
|
+ if not os.path.exists(folder):
|
|
|
+ os.makedirs(folder)
|
|
|
+
|
|
|
+ with open(surrogate_output_data, 'w') as f:
|
|
|
+ f.write('x;y\n')
|
|
|
+
|
|
|
+ # custom ILS for surrogate use
|
|
|
+ algo = ILSSurrogate(_initalizer=init,
|
|
|
+ _evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
|
|
|
+ _operators=operators,
|
|
|
+ _policy=policy,
|
|
|
+ _validator=validator,
|
|
|
+ _surrogate_file_path=surrogate_output_model,
|
|
|
+ _start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
|
|
|
+ _solutions_file=surrogate_output_data,
|
|
|
+ _ls_train_surrogate=1,
|
|
|
+ _maximise=True)
|
|
|
+
|
|
|
+ algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
|
|
|
+ algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
|
|
|
+
|
|
|
+ bestSol = algo.run(p_ils_iteration, p_ls_iteration)
|
|
|
+
|
|
|
+ # print best solution found
|
|
|
+ print("Found ", bestSol)
|
|
|
+
|
|
|
+ # save model information into .csv file
|
|
|
+ if not os.path.exists(cfg.results_information_folder):
|
|
|
+ os.makedirs(cfg.results_information_folder)
|
|
|
+
|
|
|
+ filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
|
|
|
+
|
|
|
+ filters_counter = 0
|
|
|
+ # count number of filters
|
|
|
+ for index, item in enumerate(bestSol.data):
|
|
|
+ if index != 0 and index % 2 == 1:
|
|
|
+
|
|
|
+ # if two attributes are used
|
|
|
+ if item == 1 or bestSol.data[index - 1] == 1:
|
|
|
+ filters_counter += 1
|
|
|
+
|
|
|
+
|
|
|
+ line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
|
|
|
+ with open(filename_path, 'a') as f:
|
|
|
+ f.write(line_info + '\n')
|
|
|
+
|
|
|
+ print('Result saved into %s' % filename_path)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|