|
@@ -1,4 +1,6 @@
|
|
|
# models imports
|
|
|
+import numpy as np
|
|
|
+
|
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
@@ -68,6 +70,7 @@ def _get_best_gpu_model(X_train, y_train):
|
|
|
svc.fit(X_train, y_train)
|
|
|
|
|
|
score = cross_val_score(svc, X_train, y_train, cv=k_fold, n_jobs=-1)
|
|
|
+ score = np.mean(score)
|
|
|
|
|
|
# keep track of best model
|
|
|
if score > bestScore:
|