|
@@ -0,0 +1,40 @@
|
|
|
+import argparse
|
|
|
+import os
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
|
|
|
+
|
|
|
+ parser.add_argument('--log', type=str, help='log file attribute', required=True)
|
|
|
+ parser.add_argument('--output', type=str, help='output solution choice', required=True)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_log = args.log
|
|
|
+ p_output = args.output
|
|
|
+
|
|
|
+ with open(p_log, 'r') as f:
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ for line in lines:
|
|
|
+ if 'Current Binary solution' in line:
|
|
|
+ score = float(line.split('SCORE')[-1])
|
|
|
+
|
|
|
+ solution = list(map(int, line.split('[')[-1].split(']')[0].split(' ')))
|
|
|
+
|
|
|
+ with open(p_output, 'a') as f:
|
|
|
+
|
|
|
+ line = ''
|
|
|
+
|
|
|
+ for index, v in enumerate(solution):
|
|
|
+ line += str(v)
|
|
|
+
|
|
|
+ if index < len(solution) - 1:
|
|
|
+ line += ','
|
|
|
+ line += ';' + str(score)
|
|
|
+
|
|
|
+ f.write(line + '\n')
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|