|
@@ -67,14 +67,11 @@ def rfe_svm_model(X_train, y_train, n_components=1):
|
|
|
|
|
|
Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
gammas = [0.001, 0.01, 0.1, 1, 5, 10, 100]
|
|
gammas = [0.001, 0.01, 0.1, 1, 5, 10, 100]
|
|
- param_grid = {'estimator__kernel':['rbf'], 'estimator__C': Cs, 'estimator__gamma' : gammas}
|
|
|
|
-
|
|
|
|
- svc = svm.SVC(probability=True)
|
|
|
|
-
|
|
|
|
- rfe_model = RFECV(svc, step=1, cv=10, verbose=0)
|
|
|
|
-
|
|
|
|
- clf = GridSearchCV(rfe_model, param_grid, cv=10, scoring='accuracy', verbose=1)
|
|
|
|
|
|
+ param_grid = [{'estimator__C': Cs, 'estimator__gamma' : gammas}]
|
|
|
|
|
|
|
|
+ estimator = svm.SVC(kernel="linear")
|
|
|
|
+ selector = RFECV(estimator, step=1, cv=4, verbose=0)
|
|
|
|
+ clf = GridSearchCV(selector, param_grid, cv=5, verbose=1)
|
|
clf.fit(X_train, y_train)
|
|
clf.fit(X_train, y_train)
|
|
|
|
|
|
print(clf.best_estimator_)
|
|
print(clf.best_estimator_)
|
|
@@ -83,6 +80,8 @@ def rfe_svm_model(X_train, y_train, n_components=1):
|
|
print('------------------------------')
|
|
print('------------------------------')
|
|
print(clf.best_estimator_.ranking_)
|
|
print(clf.best_estimator_.ranking_)
|
|
print('------------------------------')
|
|
print('------------------------------')
|
|
|
|
+ print(clf.best_estimator_.support_)
|
|
|
|
+ print('------------------------------')
|
|
print(clf.best_estimator_.grid_scores_)
|
|
print(clf.best_estimator_.grid_scores_)
|
|
|
|
|
|
return clf.best_estimator_.estimator_
|
|
return clf.best_estimator_.estimator_
|