|
@@ -25,13 +25,13 @@ from sklearn.model_selection import KFold, cross_val_score
|
|
|
|
|
|
def _get_best_model(X_train, y_train):
|
|
def _get_best_model(X_train, y_train):
|
|
|
|
|
|
- Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
|
|
- gammas = [0.001, 0.01, 0.1, 5, 10, 100]
|
|
|
|
|
|
+ Cs = [0.01, 0.1, 10, 100, 1000]
|
|
|
|
+ gammas = [0.01, 0.1, 10, 100]
|
|
param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
|
|
|
svc = svm.SVC(probability=True, class_weight='balanced')
|
|
svc = svm.SVC(probability=True, class_weight='balanced')
|
|
#clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
#clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
- clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, n_jobs=-1)
|
|
|
|
|
|
+ clf = GridSearchCV(svc, param_grid, cv=3, verbose=1, n_jobs=-1)
|
|
|
|
|
|
clf.fit(X_train, y_train)
|
|
clf.fit(X_train, y_train)
|
|
|
|
|