|
@@ -6,7 +6,7 @@ from sklearn.neighbors import KNeighborsClassifier
|
|
|
from sklearn.ensemble import GradientBoostingClassifier
|
|
|
from sklearn.feature_selection import RFECV
|
|
|
import sklearn.svm as svm
|
|
|
-from sklearn.metrics.scorer import accuracy_scorer
|
|
|
+from sklearn.metrics import accuracy_scorer
|
|
|
from thundersvm import SVC
|
|
|
|
|
|
# variables and parameters
|
|
@@ -21,12 +21,12 @@ def my_accuracy_scorer(*args):
|
|
|
|
|
|
def _get_best_model(X_train, y_train):
|
|
|
|
|
|
- Cs = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100, 1000]
|
|
|
- gammas = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100]
|
|
|
+ Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
|
+ gammas = [0.001, 0.01, 0.1, 5, 10, 100]
|
|
|
param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
|
|
|
svc = svm.SVC(probability=True, class_weight='balanced')
|
|
|
- clf = GridSearchCV(svc, param_grid, cv=10, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
|
+ clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
|
|
|
|
clf.fit(X_train, y_train)
|
|
|
|