|
@@ -99,6 +99,7 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
self._k_random = k_random
|
|
self._k_random = k_random
|
|
self._k_indices = None
|
|
self._k_indices = None
|
|
self._surrogates = None
|
|
self._surrogates = None
|
|
|
|
+ self._population = None
|
|
|
|
|
|
self._generate_only = generate_only
|
|
self._generate_only = generate_only
|
|
self._solutions_folder = solutions_folder
|
|
self._solutions_folder = solutions_folder
|
|
@@ -193,10 +194,6 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
current_learn = df.sample(training_samples)
|
|
current_learn = df.sample(training_samples)
|
|
current_test = df.drop(current_learn.index)
|
|
current_test = df.drop(current_learn.index)
|
|
|
|
|
|
- # TODO : (check) not necessary now to select specific features indices into set
|
|
|
|
- # current_learn = learn.copy()
|
|
|
|
- # current_test = test.copy()
|
|
|
|
-
|
|
|
|
problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
|
|
problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
|
|
model = Lasso(alpha=1e-5)
|
|
model = Lasso(alpha=1e-5)
|
|
surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
|
|
surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
|
|
@@ -290,17 +287,10 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
"""
|
|
"""
|
|
|
|
|
|
# for each indices set, get r^2 surrogate model and made prediction score
|
|
# for each indices set, get r^2 surrogate model and made prediction score
|
|
-
|
|
|
|
num_cores = multiprocessing.cpu_count()
|
|
num_cores = multiprocessing.cpu_count()
|
|
|
|
|
|
r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
|
|
r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
|
|
|
|
|
|
- # for i, _ in enumerate(self._k_indices):
|
|
|
|
- # r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
|
|
|
|
- # r_squared_scores.append(r_squared)
|
|
|
|
-
|
|
|
|
- #print(r_squared_scores)
|
|
|
|
-
|
|
|
|
return r_squared_scores
|
|
return r_squared_scores
|
|
|
|
|
|
def surrogates_mae(self):
|
|
def surrogates_mae(self):
|
|
@@ -310,17 +300,11 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
mae_scores: [{float}] -- mae scores from model
|
|
mae_scores: [{float}] -- mae scores from model
|
|
"""
|
|
"""
|
|
|
|
|
|
- # for each indices set, get r^2 surrogate model and made prediction score
|
|
|
|
-
|
|
|
|
|
|
+ # for each indices set, get mae surrogate model and made prediction score
|
|
num_cores = multiprocessing.cpu_count()
|
|
num_cores = multiprocessing.cpu_count()
|
|
|
|
|
|
mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
|
|
mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
|
|
|
|
|
|
- # for i, _ in enumerate(self._k_indices):
|
|
|
|
- # r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
|
|
|
|
- # r_squared_scores.append(r_squared)
|
|
|
|
-
|
|
|
|
- #print(mae_scores)
|
|
|
|
|
|
|
|
return mae_scores
|
|
return mae_scores
|
|
|
|
|
|
@@ -361,11 +345,7 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
# initialize current solution
|
|
# initialize current solution
|
|
self.initRun()
|
|
self.initRun()
|
|
|
|
|
|
- # enable resuming for ILS
|
|
|
|
- self.resume()
|
|
|
|
-
|
|
|
|
- if self._k_indices is None:
|
|
|
|
- self.init_k_split_indices()
|
|
|
|
|
|
+ self.init_k_split_indices()
|
|
|
|
|
|
# add norm to indentify sub problem data
|
|
# add norm to indentify sub problem data
|
|
self.init_solutions_files()
|
|
self.init_solutions_files()
|
|
@@ -374,6 +354,9 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
self.define_sub_evaluators()
|
|
self.define_sub_evaluators()
|
|
self.init_population()
|
|
self.init_population()
|
|
|
|
|
|
|
|
+ # enable resuming for ILS
|
|
|
|
+ self.resume()
|
|
|
|
+
|
|
# count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
|
|
# count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
|
|
if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
|
|
if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
|
|
|
|
|
|
@@ -463,20 +446,27 @@ class ILSMultiSpecificSurrogate(Algorithm):
|
|
|
|
|
|
sub_problem_solution._score = fitness_score
|
|
sub_problem_solution._score = fitness_score
|
|
|
|
|
|
- # if solution is really better after real evaluation, then we replace
|
|
|
|
- if self.isBetter(self._population[i]):
|
|
|
|
- self._population[i] = sub_problem_solution
|
|
|
|
|
|
+ # if solution is really better after real evaluation, then we replace (depending of problem nature (minimizing / maximizing))
|
|
|
|
+ if self._maximise:
|
|
|
|
+ if sub_problem_solution.fitness() > self._population[i].fitness():
|
|
|
|
+ self._population[i] = sub_problem_solution
|
|
|
|
+ else:
|
|
|
|
+ if sub_problem_solution.fitness() < self._population[i].fitness():
|
|
|
|
+ self._population[i] = sub_problem_solution
|
|
|
|
|
|
self.add_to_surrogate(sub_problem_solution, i)
|
|
self.add_to_surrogate(sub_problem_solution, i)
|
|
|
|
|
|
|
|
+ print(f'State of current population for surrogates ({len(self._population)} members)')
|
|
|
|
+ for i, s in enumerate(self._population):
|
|
|
|
+ print(f'Population[{i}]: best solution fitness is {s.fitness()}')
|
|
|
|
|
|
# main best solution update
|
|
# main best solution update
|
|
if self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
if self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
|
|
|
|
# need to create virtual solution from current population
|
|
# need to create virtual solution from current population
|
|
- obtained_solution_data = np.array([ s._data for s in self._population ]).flatten().tolist()
|
|
|
|
|
|
+ obtained_solution_data = np.array([ s._data for s in self._population ], dtype='object').flatten().tolist()
|
|
|
|
|
|
- if obtained_solution_data == self._bestSolution.data:
|
|
|
|
|
|
+ if list(obtained_solution_data) == list(self._bestSolution._data):
|
|
print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
|
|
print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
|
|
else:
|
|
else:
|
|
print(f'-- Updates found from sub-model surrogates LS')
|
|
print(f'-- Updates found from sub-model surrogates LS')
|