|
@@ -28,344 +28,6 @@ def get_svd_data(data_type, block):
|
|
|
Method which returns the data type expected
|
|
|
"""
|
|
|
|
|
|
- if data_type == 'lab':
|
|
|
-
|
|
|
- block_file_path = '/tmp/lab_img.png'
|
|
|
- block.save(block_file_path)
|
|
|
- data = transform.get_LAB_L_SVD_s(Image.open(block_file_path))
|
|
|
-
|
|
|
- if data_type == 'mscn':
|
|
|
-
|
|
|
- img_mscn_revisited = transform.rgb_to_mscn(block)
|
|
|
-
|
|
|
- # save tmp as img
|
|
|
- img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
|
|
|
- mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
|
|
|
- img_output.save(mscn_revisited_file_path)
|
|
|
- img_block = Image.open(mscn_revisited_file_path)
|
|
|
-
|
|
|
- # extract from temp image
|
|
|
- data = compression.get_SVD_s(img_block)
|
|
|
-
|
|
|
- """if data_type == 'mscn':
|
|
|
-
|
|
|
- img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
|
|
|
- img_mscn = transform.calculate_mscn_coefficients(img_gray, 7)
|
|
|
- img_mscn_norm = transform.normalize_2D_arr(img_mscn)
|
|
|
-
|
|
|
- img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
|
|
|
-
|
|
|
- data = compression.get_SVD_s(img_mscn_gray)
|
|
|
- """
|
|
|
-
|
|
|
- if data_type == 'low_bits_6':
|
|
|
-
|
|
|
- low_bits_6 = transform.rgb_to_LAB_L_low_bits(block, 6)
|
|
|
- data = compression.get_SVD_s(low_bits_6)
|
|
|
-
|
|
|
- if data_type == 'low_bits_5':
|
|
|
-
|
|
|
- low_bits_5 = transform.rgb_to_LAB_L_low_bits(block, 5)
|
|
|
- data = compression.get_SVD_s(low_bits_5)
|
|
|
-
|
|
|
- if data_type == 'low_bits_4':
|
|
|
-
|
|
|
- low_bits_4 = transform.rgb_to_LAB_L_low_bits(block, 4)
|
|
|
- data = compression.get_SVD_s(low_bits_4)
|
|
|
-
|
|
|
- if data_type == 'low_bits_3':
|
|
|
-
|
|
|
- low_bits_3 = transform.rgb_to_LAB_L_low_bits(block, 3)
|
|
|
- data = compression.get_SVD_s(low_bits_3)
|
|
|
-
|
|
|
- if data_type == 'low_bits_2':
|
|
|
-
|
|
|
- low_bits_2 = transform.rgb_to_LAB_L_low_bits(block, 2)
|
|
|
- data = compression.get_SVD_s(low_bits_2)
|
|
|
-
|
|
|
- if data_type == 'low_bits_4_shifted_2':
|
|
|
-
|
|
|
- data = compression.get_SVD_s(transform.rgb_to_LAB_L_bits(block, (3, 6)))
|
|
|
-
|
|
|
- if data_type == 'sub_blocks_stats':
|
|
|
-
|
|
|
- block = np.asarray(block)
|
|
|
- width, height, _= block.shape
|
|
|
- sub_width, sub_height = int(width / 4), int(height / 4)
|
|
|
-
|
|
|
- sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
|
|
|
-
|
|
|
- data = []
|
|
|
-
|
|
|
- for sub_b in sub_blocks:
|
|
|
-
|
|
|
- # by default use the whole lab L canal
|
|
|
- l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
|
|
|
-
|
|
|
- # get information we want from svd
|
|
|
- data.append(np.mean(l_svd_data))
|
|
|
- data.append(np.median(l_svd_data))
|
|
|
- data.append(np.percentile(l_svd_data, 25))
|
|
|
- data.append(np.percentile(l_svd_data, 75))
|
|
|
- data.append(np.var(l_svd_data))
|
|
|
-
|
|
|
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=100)
|
|
|
- data.append(area_under_curve)
|
|
|
-
|
|
|
- # convert into numpy array after computing all stats
|
|
|
- data = np.asarray(data)
|
|
|
-
|
|
|
- if data_type == 'sub_blocks_stats_reduced':
|
|
|
-
|
|
|
- block = np.asarray(block)
|
|
|
- width, height, _= block.shape
|
|
|
- sub_width, sub_height = int(width / 4), int(height / 4)
|
|
|
-
|
|
|
- sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
|
|
|
-
|
|
|
- data = []
|
|
|
-
|
|
|
- for sub_b in sub_blocks:
|
|
|
-
|
|
|
- # by default use the whole lab L canal
|
|
|
- l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
|
|
|
-
|
|
|
- # get information we want from svd
|
|
|
- data.append(np.mean(l_svd_data))
|
|
|
- data.append(np.median(l_svd_data))
|
|
|
- data.append(np.percentile(l_svd_data, 25))
|
|
|
- data.append(np.percentile(l_svd_data, 75))
|
|
|
- data.append(np.var(l_svd_data))
|
|
|
-
|
|
|
- # convert into numpy array after computing all stats
|
|
|
- data = np.asarray(data)
|
|
|
-
|
|
|
- if data_type == 'sub_blocks_area':
|
|
|
-
|
|
|
- block = np.asarray(block)
|
|
|
- width, height, _= block.shape
|
|
|
- sub_width, sub_height = int(width / 8), int(height / 8)
|
|
|
-
|
|
|
- sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
|
|
|
-
|
|
|
- data = []
|
|
|
-
|
|
|
- for sub_b in sub_blocks:
|
|
|
-
|
|
|
- # by default use the whole lab L canal
|
|
|
- l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
|
|
|
-
|
|
|
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
|
|
|
- data.append(area_under_curve)
|
|
|
-
|
|
|
- # convert into numpy array after computing all stats
|
|
|
- data = np.asarray(data)
|
|
|
-
|
|
|
- if data_type == 'sub_blocks_area_normed':
|
|
|
-
|
|
|
- block = np.asarray(block)
|
|
|
- width, height, _= block.shape
|
|
|
- sub_width, sub_height = int(width / 8), int(height / 8)
|
|
|
-
|
|
|
- sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
|
|
|
-
|
|
|
- data = []
|
|
|
-
|
|
|
- for sub_b in sub_blocks:
|
|
|
-
|
|
|
- # by default use the whole lab L canal
|
|
|
- l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
|
|
|
- l_svd_data = utils.normalize_arr(l_svd_data)
|
|
|
-
|
|
|
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
|
|
|
- data.append(area_under_curve)
|
|
|
-
|
|
|
- # convert into numpy array after computing all stats
|
|
|
- data = np.asarray(data)
|
|
|
-
|
|
|
- if data_type == 'mscn_var_4':
|
|
|
-
|
|
|
- data = _get_mscn_variance(block, (100, 100))
|
|
|
-
|
|
|
- if data_type == 'mscn_var_16':
|
|
|
-
|
|
|
- data = _get_mscn_variance(block, (50, 50))
|
|
|
-
|
|
|
- if data_type == 'mscn_var_64':
|
|
|
-
|
|
|
- data = _get_mscn_variance(block, (25, 25))
|
|
|
-
|
|
|
- if data_type == 'mscn_var_16_max':
|
|
|
-
|
|
|
- data = _get_mscn_variance(block, (50, 50))
|
|
|
- data = np.asarray(data)
|
|
|
- size = int(len(data) / 4)
|
|
|
- indices = data.argsort()[-size:][::-1]
|
|
|
- data = data[indices]
|
|
|
-
|
|
|
- if data_type == 'mscn_var_64_max':
|
|
|
-
|
|
|
- data = _get_mscn_variance(block, (25, 25))
|
|
|
- data = np.asarray(data)
|
|
|
- size = int(len(data) / 4)
|
|
|
- indices = data.argsort()[-size:][::-1]
|
|
|
- data = data[indices]
|
|
|
-
|
|
|
- if data_type == 'ica_diff':
|
|
|
- current_image = transform.get_LAB_L(block)
|
|
|
-
|
|
|
- ica = FastICA(n_components=50)
|
|
|
- ica.fit(current_image)
|
|
|
-
|
|
|
- image_ica = ica.fit_transform(current_image)
|
|
|
- image_restored = ica.inverse_transform(image_ica)
|
|
|
-
|
|
|
- final_image = utils.normalize_2D_arr(image_restored)
|
|
|
- final_image = np.array(final_image * 255, 'uint8')
|
|
|
-
|
|
|
- sv_values = utils.normalize_arr(compression.get_SVD_s(current_image))
|
|
|
- ica_sv_values = utils.normalize_arr(compression.get_SVD_s(final_image))
|
|
|
-
|
|
|
- data = abs(np.array(sv_values) - np.array(ica_sv_values))
|
|
|
-
|
|
|
- if data_type == 'svd_trunc_diff':
|
|
|
-
|
|
|
- current_image = transform.get_LAB_L(block)
|
|
|
-
|
|
|
- svd = TruncatedSVD(n_components=30, n_iter=100, random_state=42)
|
|
|
- transformed_image = svd.fit_transform(current_image)
|
|
|
- restored_image = svd.inverse_transform(transformed_image)
|
|
|
-
|
|
|
- reduced_image = (current_image - restored_image)
|
|
|
-
|
|
|
- U, s, V = compression.get_SVD(reduced_image)
|
|
|
- data = s
|
|
|
-
|
|
|
- if data_type == 'ipca_diff':
|
|
|
-
|
|
|
- current_image = transform.get_LAB_L(block)
|
|
|
-
|
|
|
- transformer = IncrementalPCA(n_components=20, batch_size=25)
|
|
|
- transformed_image = transformer.fit_transform(current_image)
|
|
|
- restored_image = transformer.inverse_transform(transformed_image)
|
|
|
-
|
|
|
- reduced_image = (current_image - restored_image)
|
|
|
-
|
|
|
- U, s, V = compression.get_SVD(reduced_image)
|
|
|
- data = s
|
|
|
-
|
|
|
- if data_type == 'svd_reconstruct':
|
|
|
-
|
|
|
- reconstructed_interval = (90, 200)
|
|
|
- begin, end = reconstructed_interval
|
|
|
-
|
|
|
- lab_img = transform.get_LAB_L(block)
|
|
|
- lab_img = np.array(lab_img, 'uint8')
|
|
|
-
|
|
|
- U, s, V = lin_svd(lab_img, full_matrices=True)
|
|
|
-
|
|
|
- smat = np.zeros((end-begin, end-begin), dtype=complex)
|
|
|
- smat[:, :] = np.diag(s[begin:end])
|
|
|
- output_img = np.dot(U[:, begin:end], np.dot(smat, V[begin:end, :]))
|
|
|
-
|
|
|
- output_img = np.array(output_img, 'uint8')
|
|
|
-
|
|
|
- data = compression.get_SVD_s(output_img)
|
|
|
-
|
|
|
- if 'sv_std_filters' in data_type:
|
|
|
-
|
|
|
- # convert into lab by default to apply filters
|
|
|
- lab_img = transform.get_LAB_L(block)
|
|
|
- arr = np.array(lab_img)
|
|
|
- images = []
|
|
|
-
|
|
|
- # Apply list of filter on arr
|
|
|
- images.append(medfilt2d(arr, [3, 3]))
|
|
|
- images.append(medfilt2d(arr, [5, 5]))
|
|
|
- images.append(wiener(arr, [3, 3]))
|
|
|
- images.append(wiener(arr, [5, 5]))
|
|
|
-
|
|
|
- # By default computation of current block image
|
|
|
- s_arr = compression.get_SVD_s(arr)
|
|
|
- sv_vector = [s_arr]
|
|
|
-
|
|
|
- # for each new image apply SVD and get SV
|
|
|
- for img in images:
|
|
|
- s = compression.get_SVD_s(img)
|
|
|
- sv_vector.append(s)
|
|
|
-
|
|
|
- sv_array = np.array(sv_vector)
|
|
|
-
|
|
|
- _, len = sv_array.shape
|
|
|
-
|
|
|
- sv_std = []
|
|
|
-
|
|
|
- # normalize each SV vectors and compute standard deviation for each sub vectors
|
|
|
- for i in range(len):
|
|
|
- sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
|
|
|
- sv_std.append(np.std(sv_array[:, i]))
|
|
|
-
|
|
|
- indices = []
|
|
|
-
|
|
|
- if 'lowest' in data_type:
|
|
|
- indices = utils.get_indices_of_lowest_values(sv_std, 200)
|
|
|
-
|
|
|
- if 'highest' in data_type:
|
|
|
- indices = utils.get_indices_of_highest_values(sv_std, 200)
|
|
|
-
|
|
|
- # data are arranged following std trend computed
|
|
|
- data = s_arr[indices]
|
|
|
-
|
|
|
- # with the use of wavelet
|
|
|
- if 'wave_sv_std_filters' in data_type:
|
|
|
-
|
|
|
- # convert into lab by default to apply filters
|
|
|
- lab_img = transform.get_LAB_L(block)
|
|
|
- arr = np.array(lab_img)
|
|
|
- images = []
|
|
|
-
|
|
|
- # Apply list of filter on arr
|
|
|
- images.append(medfilt2d(arr, [3, 3]))
|
|
|
- images.append(medfilt2d(arr, [5, 5]))
|
|
|
- images.append(medfilt2d(arr, [7, 7]))
|
|
|
- images.append(wiener(arr, [3, 3]))
|
|
|
- images.append(wiener(arr, [4, 4]))
|
|
|
- images.append(wiener(arr, [5, 5]))
|
|
|
- images.append(w2d(arr, 'haar', 2))
|
|
|
- images.append(w2d(arr, 'haar', 3))
|
|
|
- images.append(w2d(arr, 'haar', 4))
|
|
|
-
|
|
|
- # By default computation of current block image
|
|
|
- s_arr = compression.get_SVD_s(arr)
|
|
|
- sv_vector = [s_arr]
|
|
|
-
|
|
|
- # for each new image apply SVD and get SV
|
|
|
- for img in images:
|
|
|
- s = compression.get_SVD_s(img)
|
|
|
- sv_vector.append(s)
|
|
|
-
|
|
|
- sv_array = np.array(sv_vector)
|
|
|
-
|
|
|
- _, len = sv_array.shape
|
|
|
-
|
|
|
- sv_std = []
|
|
|
-
|
|
|
- # normalize each SV vectors and compute standard deviation for each sub vectors
|
|
|
- for i in range(len):
|
|
|
- sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
|
|
|
- sv_std.append(np.std(sv_array[:, i]))
|
|
|
-
|
|
|
- indices = []
|
|
|
-
|
|
|
- if 'lowest' in data_type:
|
|
|
- indices = utils.get_indices_of_lowest_values(sv_std, 200)
|
|
|
-
|
|
|
- if 'highest' in data_type:
|
|
|
- indices = utils.get_indices_of_highest_values(sv_std, 200)
|
|
|
-
|
|
|
- # data are arranged following std trend computed
|
|
|
- data = s_arr[indices]
|
|
|
-
|
|
|
if 'filters_statistics' in data_type:
|
|
|
|
|
|
img_width, img_height = 200, 200
|