|
@@ -0,0 +1,173 @@
|
|
|
|
+# main imports
|
|
|
|
+import sys, os, argparse
|
|
|
|
+import subprocess
|
|
|
|
+import time
|
|
|
|
+import numpy as np
|
|
|
|
+
|
|
|
|
+# image processing imports
|
|
|
|
+from ipfml.processing import segmentation
|
|
|
|
+from PIL import Image
|
|
|
|
+
|
|
|
|
+# models imports
|
|
|
|
+from sklearn.externals import joblib
|
|
|
|
+
|
|
|
|
+# modules imports
|
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
|
+
|
|
|
|
+import custom_config as cfg
|
|
|
|
+from modules.utils import data as dt
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# variables and parameters
|
|
|
|
+scenes_path = cfg.dataset_path
|
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
|
+threshold_expe_filename = cfg.seuil_expe_filename
|
|
|
|
+
|
|
|
|
+threshold_map_folder = cfg.threshold_map_folder
|
|
|
|
+threshold_map_file_prefix = cfg.threshold_map_folder + "_"
|
|
|
|
+
|
|
|
|
+zones = cfg.zones_indices
|
|
|
|
+normalization_choices = cfg.normalization_choices
|
|
|
|
+features_choices = cfg.features_choices_labels
|
|
|
|
+
|
|
|
|
+simulation_curves_zones = "simulation_curves_zones_"
|
|
|
|
+tmp_filename = '/tmp/__model__img_to_predict.png'
|
|
|
|
+
|
|
|
|
+current_dirpath = os.getcwd()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+
|
|
|
|
+ p_custom = False
|
|
|
|
+
|
|
|
|
+ parser = argparse.ArgumentParser(description="Script which predicts threshold using specific model")
|
|
|
|
+
|
|
|
|
+ parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use')
|
|
|
|
+ parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
|
|
|
|
+ parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=normalization_choices)
|
|
|
|
+ parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices)
|
|
|
|
+ parser.add_argument('--scene', type=str, help='scene to use for simulation', choices=cfg.scenes_indices)
|
|
|
|
+ #parser.add_argument('--limit_detection', type=int, help='Specify number of same prediction to stop threshold prediction', default=2)
|
|
|
|
+ parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
|
|
|
|
+ parser.add_argument('--filter', type=str, help='filter reduction solution used', choices=cfg.filter_reduction_choices)
|
|
|
|
+
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+
|
|
|
|
+ # keep p_interval as it is
|
|
|
|
+ p_solution = args.solution
|
|
|
|
+ p_model_file = args.model
|
|
|
|
+ p_mode = args.mode
|
|
|
|
+ p_feature = args.feature
|
|
|
|
+ p_scene = args.scene
|
|
|
|
+ #p_limit = args.limit
|
|
|
|
+ p_custom = args.custom
|
|
|
|
+ p_filter = args.filter
|
|
|
|
+
|
|
|
|
+ # get scene name using index
|
|
|
|
+
|
|
|
|
+ # list all possibles choices of renderer
|
|
|
|
+ scenes_list = cfg.scenes_names
|
|
|
|
+ scenes_indices = cfg.scenes_indices
|
|
|
|
+
|
|
|
|
+ scene_index = scenes_indices.index(p_scene.strip())
|
|
|
|
+ scene_name = scenes_list[scene_index]
|
|
|
|
+
|
|
|
|
+ print(scene_name)
|
|
|
|
+ scene_path = os.path.join(scenes_path, scene_name)
|
|
|
|
+
|
|
|
|
+ threshold_expes = []
|
|
|
|
+ threshold_expes_found = []
|
|
|
|
+ block_predictions_str = []
|
|
|
|
+
|
|
|
|
+ # get all images of folder
|
|
|
|
+ scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
|
|
|
|
+
|
|
|
|
+ start_quality_image = dt.get_scene_image_quality(scene_images[0])
|
|
|
|
+ end_quality_image = dt.get_scene_image_quality(scene_images[-1])
|
|
|
|
+ # using first two images find the step of quality used
|
|
|
|
+ quality_step_image = dt.get_scene_image_quality(scene_images[1]) - start_quality_image
|
|
|
|
+
|
|
|
|
+ # get zones list info
|
|
|
|
+ for index in zones:
|
|
|
|
+ index_str = str(index)
|
|
|
|
+ if len(index_str) < 2:
|
|
|
|
+ index_str = "0" + index_str
|
|
|
|
+ zone_folder = "zone"+index_str
|
|
|
|
+
|
|
|
|
+ threshold_path_file = os.path.join(os.path.join(scene_path, zone_folder), threshold_expe_filename)
|
|
|
|
+
|
|
|
|
+ with open(threshold_path_file) as f:
|
|
|
|
+ threshold = int(f.readline())
|
|
|
|
+ threshold_expes.append(threshold)
|
|
|
|
+
|
|
|
|
+ # Initialize default data to get detected model threshold found
|
|
|
|
+ threshold_expes_found.append(end_quality_image) # by default use max
|
|
|
|
+
|
|
|
|
+ block_predictions_str.append(index_str + ";" + p_model_file + ";" + str(threshold) + ";" + str(start_quality_image) + ";" + str(quality_step_image))
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ # for each images
|
|
|
|
+ for img_path in scene_images:
|
|
|
|
+
|
|
|
|
+ current_img = Image.open(img_path)
|
|
|
|
+ current_quality_image = dt.get_scene_image_quality(img_path)
|
|
|
|
+
|
|
|
|
+ img_blocks = segmentation.divide_in_blocks(current_img, (200, 200))
|
|
|
|
+
|
|
|
|
+ for id_block, block in enumerate(img_blocks):
|
|
|
|
+
|
|
|
|
+ # check only if necessary for this scene (not already detected)
|
|
|
|
+ #if not threshold_expes_detected[id_block]:
|
|
|
|
+
|
|
|
|
+ tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.joblib', '_'))
|
|
|
|
+ block.save(tmp_file_path)
|
|
|
|
+
|
|
|
|
+ python_cmd_line = "python prediction/predict_noisy_image_svd_" + p_filter + ".py --image {0} --solution '{1}' --model {2} --mode {3} --feature {4}"
|
|
|
|
+ python_cmd = python_cmd_line.format(tmp_file_path, p_solution, p_model_file, p_mode, p_feature)
|
|
|
|
+
|
|
|
|
+ # specify use of custom file for min max normalization
|
|
|
|
+ if p_custom:
|
|
|
|
+ python_cmd = python_cmd + ' --custom ' + p_custom
|
|
|
|
+
|
|
|
|
+ ## call command ##
|
|
|
|
+ p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
|
|
|
|
+
|
|
|
|
+ (output, err) = p.communicate()
|
|
|
|
+
|
|
|
|
+ ## Wait for result ##
|
|
|
|
+ p_status = p.wait()
|
|
|
|
+
|
|
|
|
+ prediction = int(output)
|
|
|
|
+
|
|
|
|
+ # save here in specific file of block all the predictions done
|
|
|
|
+ block_predictions_str[id_block] = block_predictions_str[id_block] + ";" + str(prediction)
|
|
|
|
+
|
|
|
|
+ print(str(id_block) + " : " + str(current_quality_image) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
|
|
|
|
+
|
|
|
|
+ print("------------------------")
|
|
|
|
+ print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)))
|
|
|
|
+ print("------------------------")
|
|
|
|
+
|
|
|
|
+ # end of scene => display of results
|
|
|
|
+
|
|
|
|
+ # construct path using model name for saving threshold map folder
|
|
|
|
+ model_threshold_path = os.path.join(threshold_map_folder, p_model_file.split('/')[-1].replace('.joblib', ''))
|
|
|
|
+
|
|
|
|
+ # create threshold model path if necessary
|
|
|
|
+ if not os.path.exists(model_threshold_path):
|
|
|
|
+ os.makedirs(model_threshold_path)
|
|
|
|
+
|
|
|
|
+ map_filename = os.path.join(model_threshold_path, simulation_curves_zones + folder_scene)
|
|
|
|
+ f_map = open(map_filename, 'w')
|
|
|
|
+
|
|
|
|
+ for line in block_predictions_str:
|
|
|
|
+ f_map.write(line + '\n')
|
|
|
|
+ f_map.close()
|
|
|
|
+
|
|
|
|
+ print("------------------------")
|
|
|
|
+
|
|
|
|
+ print("Model predictions are saved into %s" % map_filename)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__== "__main__":
|
|
|
|
+ main()
|