|
@@ -317,39 +317,39 @@ class ILSPopSurrogate(Algorithm):
|
|
|
print(f'=================================================================')
|
|
|
print(f'Best solution found so far: {self.result.fitness}')
|
|
|
|
|
|
- # check using specific dynamic criteria based on r^2
|
|
|
- r_squared = self._surrogate.analysis.coefficient_of_determination(self._surrogate.surrogate)
|
|
|
- mae = self._surrogate.analysis.mae(self._surrogate.surrogate)
|
|
|
- training_surrogate_every = int(r_squared * self._ls_train_surrogate)
|
|
|
- print(f"=> R² of surrogate is of {r_squared}.")
|
|
|
- print(f"=> MAE of surrogate is of {mae}.")
|
|
|
+ # # check using specific dynamic criteria based on r^2
|
|
|
+ # r_squared = self._surrogate.analysis.coefficient_of_determination(self._surrogate.surrogate)
|
|
|
+ # mae = self._surrogate.analysis.mae(self._surrogate.surrogate)
|
|
|
+ # training_surrogate_every = int(r_squared * self._ls_train_surrogate)
|
|
|
+ # print(f"=> R² of surrogate is of {r_squared}.")
|
|
|
+ # print(f"=> MAE of surrogate is of {mae}.")
|
|
|
|
|
|
- # avoid issue when lauching every each local search
|
|
|
- if training_surrogate_every <= 0:
|
|
|
- training_surrogate_every = 1
|
|
|
+ # # avoid issue when lauching every each local search
|
|
|
+ # if training_surrogate_every <= 0:
|
|
|
+ # training_surrogate_every = 1
|
|
|
|
|
|
- print(f'=> Retraining model every {training_surrogate_every} LS ({self._ls_local_search % training_surrogate_every} of {training_surrogate_every})')
|
|
|
+ # print(f'=> Retraining model every {training_surrogate_every} LS ({self._ls_local_search % training_surrogate_every} of {training_surrogate_every})')
|
|
|
|
|
|
|
|
|
# increase number of local search done
|
|
|
self._n_local_search += 1
|
|
|
- self._ls_local_search += 1
|
|
|
+ # self._ls_local_search += 1
|
|
|
|
|
|
- # check if necessary or not to train again surrogate
|
|
|
- if self._ls_local_search % training_surrogate_every == 0 and self._start_train_surrogate <= self.getGlobalEvaluation():
|
|
|
+ # # check if necessary or not to train again surrogate
|
|
|
+ # if self._ls_local_search % training_surrogate_every == 0 and self._start_train_surrogate <= self.getGlobalEvaluation():
|
|
|
|
|
|
- # train again surrogate on real evaluated solutions file
|
|
|
- start_training = time.time()
|
|
|
- self.train_surrogate()
|
|
|
- training_time = time.time() - start_training
|
|
|
+ # # train again surrogate on real evaluated solutions file
|
|
|
+ # start_training = time.time()
|
|
|
+ # self.train_surrogate()
|
|
|
+ # training_time = time.time() - start_training
|
|
|
|
|
|
- self._surrogate_analyser = SurrogateAnalysisMono(training_time, training_surrogate_every, r_squared, mae, self.getGlobalMaxEvaluation(), self._n_local_search)
|
|
|
+ # self._surrogate_analyser = SurrogateAnalysisMono(training_time, training_surrogate_every, r_squared, mae, self.getGlobalMaxEvaluation(), self._n_local_search)
|
|
|
|
|
|
- # reload new surrogate function
|
|
|
- self.load_surrogate()
|
|
|
+ # # reload new surrogate function
|
|
|
+ # self.load_surrogate()
|
|
|
|
|
|
- # reinit ls search
|
|
|
- self._ls_local_search = 0
|
|
|
+ # # reinit ls search
|
|
|
+ # self._ls_local_search = 0
|
|
|
|
|
|
self.information()
|
|
|
|