|
@@ -0,0 +1,160 @@
|
|
|
|
+# main imports
|
|
|
|
+import numpy as np
|
|
|
|
+import pandas as pd
|
|
|
|
+import sys, os, argparse
|
|
|
|
+
|
|
|
|
+# models imports
|
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
|
+
|
|
|
|
+import sklearn.svm as svm
|
|
|
|
+from sklearn.utils import shuffle
|
|
|
|
+from sklearn.externals import joblib
|
|
|
|
+from sklearn.metrics import accuracy_score, f1_score
|
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
|
+
|
|
|
|
+# modules and config imports
|
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
|
+
|
|
|
|
+import custom_config as cfg
|
|
|
|
+import models as mdl
|
|
|
|
+
|
|
|
|
+# variables and parameters
|
|
|
|
+saved_models_folder = cfg.saved_models_folder
|
|
|
|
+models_list = cfg.models_names_list
|
|
|
|
+
|
|
|
|
+current_dirpath = os.getcwd()
|
|
|
|
+output_model_folder = os.path.join(current_dirpath, saved_models_folder)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+
|
|
|
|
+ parser = argparse.ArgumentParser(description="Train SKLearn model and save it into .joblib file")
|
|
|
|
+
|
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)')
|
|
|
|
+ parser.add_argument('--output', type=str, help='output file name desired for model (without .joblib extension)')
|
|
|
|
+ parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list)
|
|
|
|
+ parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use')
|
|
|
|
+
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+
|
|
|
|
+ p_data_file = args.data
|
|
|
|
+ p_output = args.output
|
|
|
|
+ p_choice = args.choice
|
|
|
|
+ p_solution = list(map(int, args.solution.split(' ')))
|
|
|
|
+
|
|
|
|
+ if not os.path.exists(output_model_folder):
|
|
|
|
+ os.makedirs(output_model_folder)
|
|
|
|
+
|
|
|
|
+ ########################
|
|
|
|
+ # 1. Get and prepare data
|
|
|
|
+ ########################
|
|
|
|
+ dataset_train = pd.read_csv(p_data_file + '.train', header=None, sep=";")
|
|
|
|
+ dataset_test = pd.read_csv(p_data_file + '.test', header=None, sep=";")
|
|
|
|
+
|
|
|
|
+ # default first shuffle of data
|
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
|
+
|
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
|
+ noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
|
+ nb_noisy_train = len(noisy_df_train.index)
|
|
|
|
+
|
|
|
|
+ noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
|
+ nb_noisy_test = len(noisy_df_test.index)
|
|
|
|
+
|
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
|
+
|
|
|
|
+ # shuffle data another time
|
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
|
+
|
|
|
|
+ final_df_train_size = len(final_df_train.index)
|
|
|
|
+ final_df_test_size = len(final_df_test.index)
|
|
|
|
+
|
|
|
|
+ # use of the whole data set for training
|
|
|
|
+ x_dataset_train = final_df_train.ix[:,1:]
|
|
|
|
+ x_dataset_test = final_df_test.ix[:,1:]
|
|
|
|
+
|
|
|
|
+ y_dataset_train = final_df_train.ix[:,0]
|
|
|
|
+ y_dataset_test = final_df_test.ix[:,0]
|
|
|
|
+
|
|
|
|
+ # get indices of filters data to use (filters selection from solution)
|
|
|
|
+ indices = []
|
|
|
|
+
|
|
|
|
+ print(p_solution)
|
|
|
|
+ for index, value in enumerate(p_solution):
|
|
|
|
+ if value == 1:
|
|
|
|
+ indices.append(index)
|
|
|
|
+
|
|
|
|
+ print(indices)
|
|
|
|
+
|
|
|
|
+ x_dataset_train = x_dataset_train.iloc[:, indices]
|
|
|
|
+ x_dataset_test = x_dataset_test.iloc[:, indices]
|
|
|
|
+
|
|
|
|
+ #######################
|
|
|
|
+ # 2. Construction of the model : Ensemble model structure
|
|
|
|
+ #######################
|
|
|
|
+
|
|
|
|
+ print("-------------------------------------------")
|
|
|
|
+ print("Train dataset size: ", final_df_train_size)
|
|
|
|
+ model = mdl.get_trained_model(p_choice, x_dataset_train, y_dataset_train)
|
|
|
|
+
|
|
|
|
+ #######################
|
|
|
|
+ # 3. Fit model : use of cross validation to fit model
|
|
|
|
+ #######################
|
|
|
|
+ val_scores = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
|
|
|
|
+ print("Accuracy: %0.2f (+/- %0.2f)" % (val_scores.mean(), val_scores.std() * 2))
|
|
|
|
+
|
|
|
|
+ ######################
|
|
|
|
+ # 4. Test : Validation and test dataset from .test dataset
|
|
|
|
+ ######################
|
|
|
|
+
|
|
|
|
+ # we need to specify validation size to 20% of whole dataset
|
|
|
|
+ val_set_size = int(final_df_train_size/3)
|
|
|
|
+ test_set_size = val_set_size
|
|
|
|
+
|
|
|
|
+ total_validation_size = val_set_size + test_set_size
|
|
|
|
+
|
|
|
|
+ if final_df_test_size > total_validation_size:
|
|
|
|
+ x_dataset_test = x_dataset_test[0:total_validation_size]
|
|
|
|
+ y_dataset_test = y_dataset_test[0:total_validation_size]
|
|
|
|
+
|
|
|
|
+ X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
|
|
|
|
+
|
|
|
|
+ y_test_model = model.predict(X_test)
|
|
|
|
+ y_val_model = model.predict(X_val)
|
|
|
|
+
|
|
|
|
+ val_accuracy = accuracy_score(y_val, y_val_model)
|
|
|
|
+ test_accuracy = accuracy_score(y_test, y_test_model)
|
|
|
|
+
|
|
|
|
+ val_f1 = f1_score(y_val, y_val_model)
|
|
|
|
+ test_f1 = f1_score(y_test, y_test_model)
|
|
|
|
+
|
|
|
|
+ ###################
|
|
|
|
+ # 5. Output : Print and write all information in csv
|
|
|
|
+ ###################
|
|
|
|
+
|
|
|
|
+ print("Validation dataset size ", val_set_size)
|
|
|
|
+ print("Validation: ", val_accuracy)
|
|
|
|
+ print("Validation F1: ", val_f1)
|
|
|
|
+ print("Test dataset size ", test_set_size)
|
|
|
|
+ print("Test: ", val_accuracy)
|
|
|
|
+ print("Test F1: ", test_f1)
|
|
|
|
+
|
|
|
|
+ ##################
|
|
|
|
+ # 6. Save model : create path if not exists
|
|
|
|
+ ##################
|
|
|
|
+
|
|
|
|
+ if not os.path.exists(saved_models_folder):
|
|
|
|
+ os.makedirs(saved_models_folder)
|
|
|
|
+
|
|
|
|
+ joblib.dump(model, output_model_folder + '/' + p_output + '.joblib')
|
|
|
|
+
|
|
|
|
+if __name__== "__main__":
|
|
|
|
+ main()
|