|
@@ -1,324 +0,0 @@
|
|
|
-# main imports
|
|
|
-import numpy as np
|
|
|
-import pandas as pd
|
|
|
-
|
|
|
-import sys, os, argparse
|
|
|
-import subprocess
|
|
|
-import time
|
|
|
-import json
|
|
|
-
|
|
|
-# models imports
|
|
|
-from sklearn.utils import shuffle
|
|
|
-from sklearn.externals import joblib
|
|
|
-from sklearn.metrics import accuracy_score, f1_score, recall_score, roc_auc_score
|
|
|
-from sklearn.model_selection import cross_val_score
|
|
|
-from sklearn.model_selection import StratifiedKFold
|
|
|
-from sklearn.model_selection import train_test_split
|
|
|
-
|
|
|
-from keras.models import Sequential
|
|
|
-from keras.layers import Conv1D, MaxPooling1D
|
|
|
-from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
|
|
|
-from keras.wrappers.scikit_learn import KerasClassifier
|
|
|
-from keras import backend as K
|
|
|
-from keras.models import model_from_json
|
|
|
-
|
|
|
-# image processing imports
|
|
|
-from ipfml import processing
|
|
|
-from PIL import Image
|
|
|
-
|
|
|
-# modules imports
|
|
|
-sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
-
|
|
|
-import custom_config as cfg
|
|
|
-
|
|
|
-# variables and parameters
|
|
|
-threshold_map_folder = cfg.threshold_map_folder
|
|
|
-threshold_map_file_prefix = cfg.threshold_map_folder + "_"
|
|
|
-
|
|
|
-markdowns_folder = cfg.models_information_folder
|
|
|
-final_csv_model_comparisons = cfg.csv_model_comparisons_filename
|
|
|
-models_name = cfg.models_names_list
|
|
|
-
|
|
|
-zones = cfg.zones_indices
|
|
|
-
|
|
|
-current_dirpath = os.getcwd()
|
|
|
-
|
|
|
-
|
|
|
-def main():
|
|
|
-
|
|
|
- kind_model = 'keras'
|
|
|
- model_ext = ''
|
|
|
-
|
|
|
- parser = argparse.ArgumentParser(description="Display SVD data of scene zone")
|
|
|
-
|
|
|
- parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
|
|
|
- parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
|
|
|
- parser.add_argument('--feature', type=str, help='feature data choice', choices=cfg.features_choices_labels)
|
|
|
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices)
|
|
|
-
|
|
|
- args = parser.parse_args()
|
|
|
-
|
|
|
- p_interval = list(map(int, args.interval.split(',')))
|
|
|
- p_model_file = args.model
|
|
|
- p_feature = args.feature
|
|
|
- p_mode = args.mode
|
|
|
-
|
|
|
-
|
|
|
- # call model and get global result in scenes
|
|
|
- begin, end = p_interval
|
|
|
-
|
|
|
- bash_cmd = "bash others/testModelByScene_maxwell.sh '" + str(begin) + "' '" + str(end) + "' '" + p_model_file + "' '" + p_mode + "' '" + p_feature + "'"
|
|
|
-
|
|
|
- print(bash_cmd)
|
|
|
-
|
|
|
- ## call command ##
|
|
|
- p = subprocess.Popen(bash_cmd, stdout=subprocess.PIPE, shell=True)
|
|
|
-
|
|
|
- (output, err) = p.communicate()
|
|
|
-
|
|
|
- ## Wait for result ##
|
|
|
- p_status = p.wait()
|
|
|
-
|
|
|
- if not os.path.exists(markdowns_folder):
|
|
|
- os.makedirs(markdowns_folder)
|
|
|
-
|
|
|
- # get model name to construct model
|
|
|
-
|
|
|
- if '.joblib' in p_model_file:
|
|
|
- kind_model = 'sklearn'
|
|
|
- model_ext = '.joblib'
|
|
|
-
|
|
|
- if '.json' in p_model_file:
|
|
|
- kind_model = 'keras'
|
|
|
- model_ext = '.json'
|
|
|
-
|
|
|
- md_model_path = os.path.join(markdowns_folder, p_model_file.split('/')[-1].replace(model_ext, '.md'))
|
|
|
-
|
|
|
- with open(md_model_path, 'w') as f:
|
|
|
- f.write(output.decode("utf-8"))
|
|
|
-
|
|
|
- # read each threshold_map information if exists
|
|
|
- model_map_info_path = os.path.join(threshold_map_folder, p_model_file.replace('saved_models/', ''))
|
|
|
-
|
|
|
- if not os.path.exists(model_map_info_path):
|
|
|
- f.write('\n\n No threshold map information')
|
|
|
- else:
|
|
|
- maps_files = os.listdir(model_map_info_path)
|
|
|
-
|
|
|
- # get all map information
|
|
|
- for t_map_file in maps_files:
|
|
|
-
|
|
|
- file_path = os.path.join(model_map_info_path, t_map_file)
|
|
|
- with open(file_path, 'r') as map_file:
|
|
|
-
|
|
|
- title_scene = t_map_file.replace(threshold_map_file_prefix, '')
|
|
|
- f.write('\n\n## ' + title_scene + '\n')
|
|
|
- content = map_file.readlines()
|
|
|
-
|
|
|
- # getting each map line information
|
|
|
- for line in content:
|
|
|
- f.write(line)
|
|
|
-
|
|
|
- f.close()
|
|
|
-
|
|
|
- # Keep model information to compare
|
|
|
- current_model_name = p_model_file.split('/')[-1].replace(model_ext, '')
|
|
|
-
|
|
|
- # Prepare writing in .csv file into results folder
|
|
|
- output_final_file_path = os.path.join(cfg.results_information_folder, final_csv_model_comparisons)
|
|
|
-
|
|
|
- if not os.path.exists(cfg.results_information_folder):
|
|
|
- os.makedirs(cfg.results_information_folder)
|
|
|
-
|
|
|
- output_final_file = open(output_final_file_path, "a")
|
|
|
-
|
|
|
- print(current_model_name)
|
|
|
- # reconstruct data filename
|
|
|
- for name in models_name:
|
|
|
- if name in current_model_name:
|
|
|
- data_filename = current_model_name
|
|
|
- current_data_file_path = os.path.join('data', data_filename)
|
|
|
-
|
|
|
- print("Current data file ")
|
|
|
- print(current_data_file_path)
|
|
|
- model_scores = []
|
|
|
-
|
|
|
- ########################
|
|
|
- # 1. Get and prepare data
|
|
|
- ########################
|
|
|
- dataset_train = pd.read_csv(current_data_file_path + '.train', header=None, sep=";")
|
|
|
- dataset_test = pd.read_csv(current_data_file_path + '.test', header=None, sep=";")
|
|
|
-
|
|
|
- # default first shuffle of data
|
|
|
- dataset_train = shuffle(dataset_train)
|
|
|
- dataset_test = shuffle(dataset_test)
|
|
|
-
|
|
|
- # get dataset with equal number of classes occurences
|
|
|
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
|
|
|
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
|
|
|
- nb_noisy_train = len(noisy_df_train.index)
|
|
|
-
|
|
|
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
|
|
|
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
|
|
|
- nb_noisy_test = len(noisy_df_test.index)
|
|
|
-
|
|
|
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
|
|
|
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
|
|
|
-
|
|
|
- # shuffle data another time
|
|
|
- final_df_train = shuffle(final_df_train)
|
|
|
- final_df_test = shuffle(final_df_test)
|
|
|
-
|
|
|
- final_df_train_size = len(final_df_train.index)
|
|
|
- final_df_test_size = len(final_df_test.index)
|
|
|
-
|
|
|
- # use of the whole data set for training
|
|
|
- x_dataset_train = final_df_train.ix[:,1:]
|
|
|
- x_dataset_test = final_df_test.ix[:,1:]
|
|
|
-
|
|
|
- y_dataset_train = final_df_train.ix[:,0]
|
|
|
- y_dataset_test = final_df_test.ix[:,0]
|
|
|
-
|
|
|
- #######################
|
|
|
- # 2. Getting model
|
|
|
- #######################
|
|
|
-
|
|
|
- if kind_model == 'keras':
|
|
|
- with open(p_model_file, 'r') as f:
|
|
|
- json_model = json.load(f)
|
|
|
- model = model_from_json(json_model)
|
|
|
- model.load_weights(p_model_file.replace('.json', '.h5'))
|
|
|
-
|
|
|
- model.compile(loss='binary_crossentropy',
|
|
|
- optimizer='adam',
|
|
|
- features=['accuracy'])
|
|
|
-
|
|
|
- # reshape all input data
|
|
|
- x_dataset_train = np.array(x_dataset_train).reshape(len(x_dataset_train), end, 1)
|
|
|
- x_dataset_test = np.array(x_dataset_test).reshape(len(x_dataset_test), end, 1)
|
|
|
-
|
|
|
-
|
|
|
- if kind_model == 'sklearn':
|
|
|
- model = joblib.load(p_model_file)
|
|
|
-
|
|
|
- #######################
|
|
|
- # 3. Fit model : use of cross validation to fit model
|
|
|
- #######################
|
|
|
-
|
|
|
- if kind_model == 'keras':
|
|
|
- model.fit(x_dataset_train, y_dataset_train, validation_split=0.20, epochs=cfg.keras_epochs, batch_size=cfg.keras_batch)
|
|
|
-
|
|
|
- if kind_model == 'sklearn':
|
|
|
- model.fit(x_dataset_train, y_dataset_train)
|
|
|
-
|
|
|
- train_accuracy = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
|
|
|
-
|
|
|
- ######################
|
|
|
- # 4. Test : Validation and test dataset from .test dataset
|
|
|
- ######################
|
|
|
-
|
|
|
- # we need to specify validation size to 20% of whole dataset
|
|
|
- val_set_size = int(final_df_train_size/3)
|
|
|
- test_set_size = val_set_size
|
|
|
-
|
|
|
- total_validation_size = val_set_size + test_set_size
|
|
|
-
|
|
|
- if final_df_test_size > total_validation_size:
|
|
|
- x_dataset_test = x_dataset_test[0:total_validation_size]
|
|
|
- y_dataset_test = y_dataset_test[0:total_validation_size]
|
|
|
-
|
|
|
- X_test, X_val, y_test, y_val = train_test_split(x_dataset_test, y_dataset_test, test_size=0.5, random_state=1)
|
|
|
-
|
|
|
- if kind_model == 'keras':
|
|
|
- y_test_model = model.predict_classes(X_test)
|
|
|
- y_val_model = model.predict_classes(X_val)
|
|
|
-
|
|
|
- y_train_model = model.predict_classes(x_dataset_train)
|
|
|
-
|
|
|
- train_accuracy = accuracy_score(y_dataset_train, y_train_model)
|
|
|
-
|
|
|
- if kind_model == 'sklearn':
|
|
|
- y_test_model = model.predict(X_test)
|
|
|
- y_val_model = model.predict(X_val)
|
|
|
-
|
|
|
- y_train_model = model.predict(x_dataset_train)
|
|
|
-
|
|
|
- val_accuracy = accuracy_score(y_val, y_val_model)
|
|
|
- test_accuracy = accuracy_score(y_test, y_test_model)
|
|
|
-
|
|
|
- train_f1 = f1_score(y_dataset_train, y_train_model)
|
|
|
- train_recall = recall_score(y_dataset_train, y_train_model)
|
|
|
- train_roc_auc = roc_auc_score(y_dataset_train, y_train_model)
|
|
|
-
|
|
|
- val_f1 = f1_score(y_val, y_val_model)
|
|
|
- val_recall = recall_score(y_val, y_val_model)
|
|
|
- val_roc_auc = roc_auc_score(y_val, y_val_model)
|
|
|
-
|
|
|
- test_f1 = f1_score(y_test, y_test_model)
|
|
|
- test_recall = recall_score(y_test, y_test_model)
|
|
|
- test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
-
|
|
|
- if kind_model == 'keras':
|
|
|
- # stats of all dataset
|
|
|
- all_x_data = np.concatenate([x_dataset_train, X_test, X_val])
|
|
|
- all_y_data = np.concatenate([y_dataset_train, y_test, y_val])
|
|
|
- all_y_model = model.predict_classes(all_x_data)
|
|
|
-
|
|
|
- if kind_model == 'sklearn':
|
|
|
- # stats of all dataset
|
|
|
- all_x_data = pd.concat([x_dataset_train, X_test, X_val])
|
|
|
- all_y_data = pd.concat([y_dataset_train, y_test, y_val])
|
|
|
- all_y_model = model.predict(all_x_data)
|
|
|
-
|
|
|
- all_accuracy = accuracy_score(all_y_data, all_y_model)
|
|
|
- all_f1_score = f1_score(all_y_data, all_y_model)
|
|
|
- all_recall_score = recall_score(all_y_data, all_y_model)
|
|
|
- all_roc_auc_score = roc_auc_score(all_y_data, all_y_model)
|
|
|
-
|
|
|
- # stats of dataset sizes
|
|
|
- total_samples = final_df_train_size + val_set_size + test_set_size
|
|
|
-
|
|
|
- model_scores.append(final_df_train_size)
|
|
|
- model_scores.append(val_set_size)
|
|
|
- model_scores.append(test_set_size)
|
|
|
-
|
|
|
- model_scores.append(final_df_train_size / total_samples)
|
|
|
- model_scores.append(val_set_size / total_samples)
|
|
|
- model_scores.append(test_set_size / total_samples)
|
|
|
-
|
|
|
- # add of scores
|
|
|
- model_scores.append(train_accuracy)
|
|
|
- model_scores.append(val_accuracy)
|
|
|
- model_scores.append(test_accuracy)
|
|
|
- model_scores.append(all_accuracy)
|
|
|
-
|
|
|
- model_scores.append(train_f1)
|
|
|
- model_scores.append(train_recall)
|
|
|
- model_scores.append(train_roc_auc)
|
|
|
-
|
|
|
- model_scores.append(val_f1)
|
|
|
- model_scores.append(val_recall)
|
|
|
- model_scores.append(val_roc_auc)
|
|
|
-
|
|
|
- model_scores.append(test_f1)
|
|
|
- model_scores.append(test_recall)
|
|
|
- model_scores.append(test_roc_auc)
|
|
|
-
|
|
|
- model_scores.append(all_f1_score)
|
|
|
- model_scores.append(all_recall_score)
|
|
|
- model_scores.append(all_roc_auc_score)
|
|
|
-
|
|
|
- # TODO : improve...
|
|
|
- # check if it's always the case...
|
|
|
- nb_zones = current_data_file_path.split('_')[7]
|
|
|
-
|
|
|
- final_file_line = current_model_name + '; ' + str(end - begin) + '; ' + str(begin) + '; ' + str(end) + '; ' + str(nb_zones) + '; ' + p_feature + '; ' + p_mode
|
|
|
-
|
|
|
- for s in model_scores:
|
|
|
- final_file_line += '; ' + str(s)
|
|
|
-
|
|
|
- output_final_file.write(final_file_line + '\n')
|
|
|
-
|
|
|
-
|
|
|
-if __name__== "__main__":
|
|
|
- main()
|