|
@@ -17,7 +17,7 @@ from data_attributes import get_image_features
|
|
|
learned_zones_folder = cfg.learned_zones_folder
|
|
|
models_name = cfg.models_names_list
|
|
|
|
|
|
-def reconstruct_image(folder_path, model_name):
|
|
|
+def reconstruct_image(folder_path, model_name, p_limit):
|
|
|
"""
|
|
|
@brief Method used to display simulation given .csv files
|
|
|
@param folder_path, folder which contains all .csv files obtained during simulation
|
|
@@ -39,20 +39,28 @@ def reconstruct_image(folder_path, model_name):
|
|
|
print(scene_names[id])
|
|
|
path_file = os.path.join(folder_path, f)
|
|
|
|
|
|
+ # TODO : check if necessary to keep information about zone learned when displaying data
|
|
|
scenes_zones_used_file_path = os.path.join(learned_zones_folder_path, scene_names[id] + '.csv')
|
|
|
-
|
|
|
+
|
|
|
+ # TODO : find estimated threshold for each zone scene using `data_files` and p_limit
|
|
|
+ # TODO : find images for each zone which are attached to this estimated threshold by the model
|
|
|
+ # TODO : reconstructed the image using these zones
|
|
|
+ # TODO : Save the image with generated name based on scene, model and `p_limit`
|
|
|
+
|
|
|
|
|
|
def main():
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Display simulations curves from simulation data")
|
|
|
|
|
|
parser.add_argument('--folder', type=str, help='Folder which contains simulations data for scenes')
|
|
|
- parser.add_argument('--scene', type=str, help='Scene name index')
|
|
|
parser.add_argument('--model', type=str, help='Name of the model used for simulations')
|
|
|
+ parser.add_argument('--limit', type=int, help='Detection limit to target to stop rendering (number of times model tells image has not more noise)')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
p_folder = args.folder
|
|
|
+ p_limit = args.limit
|
|
|
+ p_output = args.output
|
|
|
|
|
|
if args.model:
|
|
|
p_model = args.model
|
|
@@ -65,7 +73,7 @@ def main():
|
|
|
|
|
|
print(p_model)
|
|
|
|
|
|
- display_curves(p_folder, p_model)
|
|
|
+ reconstruct_image(p_folder, p_model, p_limit)
|
|
|
|
|
|
print(p_folder)
|
|
|
|