Parcourir la source

Add new way of using surrogate (sub-models)

Jérôme BUISINE il y a 3 ans
Parent
commit
c0edc25f4e

+ 296 - 0
find_best_attributes_surrogate_openML_multi_specific.py

@@ -0,0 +1,296 @@
+# main imports
+import os
+import sys
+import argparse
+import pandas as pd
+import numpy as np
+import logging
+import datetime
+import random
+
+# model imports
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+
+import joblib
+import sklearn
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import roc_auc_score
+from sklearn.model_selection import cross_val_score
+from sklearn.preprocessing import MinMaxScaler
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+import models as mdl
+
+from optimization.ILSMultiSpecificSurrogate import ILSMultiSpecificSurrogate
+from macop.solutions.BinarySolution import BinarySolution
+
+from macop.operators.mutators.SimpleMutation import SimpleMutation
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
+
+from macop.operators.policies.UCBPolicy import UCBPolicy
+from macop.operators.policies.RandomPolicy import RandomPolicy
+
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint
+from optimization.callbacks.MultiSurrogateCheckpoint import MultiSurrogateCheckpoint
+
+from sklearn.ensemble import RandomForestClassifier
+
+# avoid display of warning
+def warn(*args, **kwargs):
+    pass
+
+import warnings
+warnings.filterwarnings("ignore", category=DeprecationWarning)
+warnings.warn = warn
+
+# default validator
+def validator(solution):
+
+    # at least 5 attributes
+    if list(solution._data).count(1) < 2:
+        return False
+
+    return True
+
+def train_model(X_train, y_train):
+
+    #print ('Creating model...')
+    # here use of SVM with grid search CV
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100]
+    gammas = [0.001, 0.01, 0.1,10, 100]
+    param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
+
+    svc = svm.SVC(probability=True, class_weight='balanced')
+    #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
+    clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1)
+
+    clf.fit(X_train, y_train)
+
+    model = clf.best_estimator_
+
+    return model
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    dataset = pd.read_csv(filename, sep=',')
+
+    # change label as common
+    min_label_value = min(dataset.iloc[:, -1])
+    max_label_value = max(dataset.iloc[:, -1])
+
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
+
+    X_dataset = dataset.iloc[:, :-1]
+    y_dataset = dataset.iloc[:, -1]
+
+    problem_size = len(X_dataset.columns)
+
+    # min/max normalisation over feature
+    # create a scaler object
+    scaler = MinMaxScaler()
+    # fit and transform the data
+    X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
+
+    # prepare train, validation and test datasets
+    X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
+
+    return X_train, y_train, X_test, y_test, problem_size
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
+
+    parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
+    parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value
+    parser.add_argument('--k_division', type=int, help='number of expected sub surrogate model', default=20)
+    parser.add_argument('--k_dynamic', type=int, help='specify if indices for each sub surrogate model are changed or not for each training', default=0, choices=[0, 1])
+    parser.add_argument('--k_random', type=int, help='specify if split is random or not', default=1, choices=[0, 1])
+    parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
+    parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+    parser.add_argument('--generate_only', type=int, help='number of iteration for Local Search algorithm', default=0, choices=[0, 1])
+    parser.add_argument('--output', type=str, help='output surrogate model name')
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_every_ls   = args.every_ls
+    p_k_division = args.k_division
+    p_k_dynamic = bool(args.k_dynamic)
+    p_k_random = bool(args.k_random)
+    p_ils_iteration = args.ils
+    p_ls_iteration  = args.ls
+    p_generate_only = bool(args.generate_only)
+    p_output = args.output
+
+    # load data from file and get problem size
+    X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
+
+    # create `logs` folder if necessary
+    if not os.path.exists(cfg.output_logs_folder):
+        os.makedirs(cfg.output_logs_folder)
+
+    logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG)
+
+    # init solution (`n` attributes)
+    def init():
+        return BinarySolution([], problem_size).random(validator)
+
+    # define evaluate function here (need of data information)
+    def evaluate(solution):
+
+        start = datetime.datetime.now()
+
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution._data): 
+            if value == 1: 
+                indices.append(index) 
+
+        print(f'Training SVM with {len(indices)} from {len(solution._data)} available features')
+
+        # keep only selected filters from solution
+        x_train_filters = X_train[:, indices]
+        x_test_filters = X_test[ :, indices]
+        
+        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        model = train_model(x_train_filters, y_train)
+
+        y_test_model = model.predict(x_test_filters)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+        return test_roc_auc
+
+    def sub_evaluate(solution, targeted_indices):
+
+        start = datetime.datetime.now()
+
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution._data): 
+            if value == 1: 
+                indices.append(targeted_indices[index]) 
+
+        print(f'Training sub-model SVM with {len(indices)} from {len(solution._data)} available features')
+
+        # keep only selected filters from solution
+        x_train_filters = X_train[:, indices]
+        x_test_filters = X_test[ :, indices]
+        
+        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        model = train_model(x_train_filters, y_train)
+
+        y_test_model = model.predict(x_test_filters)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print("Real sub-evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+        return test_roc_auc
+
+
+
+    # build all output folder and files based on `output` name
+    backup_model_folder = os.path.join(cfg.output_backup_folder, p_output)
+    surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output)
+    surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output)
+
+    if not os.path.exists(backup_model_folder):
+        os.makedirs(backup_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_model_folder):
+        os.makedirs(cfg.output_surrogates_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_data_folder):
+        os.makedirs(cfg.output_surrogates_data_folder)
+
+    backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
+    ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
+    surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv')
+    surrogate_k_indices_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_k_indices.csv')
+
+    # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
+    operators = [SimpleBinaryMutation(), SimpleMutation()]
+    #policy = UCBPolicy(operators)
+    policy = RandomPolicy(operators)
+
+    # custom start surrogate variable based on problem size
+    p_start = int(0.2 * problem_size)
+
+    # fixed minimal number of real evaluations
+    if p_start < 50:
+        p_start = 50
+
+    print(f'Starting using surrogate after {p_start} reals training')
+
+    # custom ILS for surrogate use
+    algo = ILSMultiSpecificSurrogate(initalizer=init, 
+                        evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
+                        sub_evaluator=sub_evaluate,
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        output_log_surrogates=os.path.join(cfg.output_surrogates_data_folder, 'logs', p_output),
+                        surrogates_file_path=surrogate_output_model,
+                        start_train_surrogates=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_folder=surrogate_output_data,
+                        ls_train_surrogates=p_every_ls, # retrain surrogate every `x` iteration
+                        k_division=p_k_division,
+                        k_dynamic=p_k_dynamic,
+                        k_random=p_k_random,
+                        generate_only=p_generate_only,
+                        maximise=True)
+    
+    algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
+    #algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
+    algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
+    algo.addCallback(MultiSurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_k_indices_backup_file_path)) # try every LS like this
+
+    bestSol = algo.run(p_ils_iteration, p_ls_iteration)
+
+    # print best solution found
+    print("Found ", bestSol)
+
+    # save model information into .csv file
+    if not os.path.exists(cfg.results_information_folder):
+        os.makedirs(cfg.results_information_folder)
+
+    filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
+
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol._data) + ';' + str(list(bestSol._data).count(1)) + ';' + str(bestSol.fitness())
+    with open(filename_path, 'a') as f:
+        f.write(line_info + '\n')
+    
+    print('Result saved into %s' % filename_path)
+
+
+if __name__ == "__main__":
+    main()

+ 560 - 0
optimization/ILSMultiSpecificSurrogate.py

@@ -0,0 +1,560 @@
+"""Iterated Local Search Algorithm implementation using multiple-surrogate (weighted sum surrogate) as fitness approximation
+"""
+
+# main imports
+import os
+import logging
+import joblib
+import time
+import math
+import numpy as np
+import pandas as pd
+import random
+
+# parallel imports
+from joblib import Parallel, delayed
+import multiprocessing
+
+# module imports
+from macop.algorithms.Algorithm import Algorithm
+from macop.solutions.BinarySolution import BinarySolution
+
+from .LSSurrogate import LocalSearchSurrogate
+from .utils.SurrogateAnalysis import SurrogateAnalysis
+
+from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
+                                    LassoCV, ElasticNet)
+
+from wsao.sao.problems.nd3dproblem import ND3DProblem
+from wsao.sao.surrogates.walsh import WalshSurrogate
+from wsao.sao.algos.fitter import FitterAlgo
+from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
+
+class ILSMultiSpecificSurrogate(Algorithm):
+    """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using multiple-surrogate where each sub-surrogate learn from specific dataset
+
+
+    Attributes:
+        initalizer: {function} -- basic function strategy to initialize solution
+        evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
+        sub_evaluator: {function} -- sub evaluator function in order to obtained fitness for sub-model
+        operators: {[Operator]} -- list of operator to use when launching algorithm
+        policy: {Policy} -- Policy class implementation strategy to select operators
+        validator: {function} -- basic function to check if solution is valid or not under some constraints
+        maximise: {bool} -- specify kind of optimization problem 
+        currentSolution: {Solution} -- current solution managed for current evaluation
+        bestSolution: {Solution} -- best solution found so far during running algorithm
+        ls_iteration: {int} -- number of evaluation for each local search algorithm
+        surrogates_file_path: {str} -- Surrogates model folder to load (models trained using https://gitlab.com/florianlprt/wsao)
+        output_log_surrogates: {str} -- Log folder for surrogates training model
+        start_train_surrogates: {int} -- number of evaluation expected before start training and use surrogate
+        surrogates: [{Surrogate}] -- Surrogates model instance loaded
+        ls_train_surrogates: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
+        k_division: {int} -- number of expected division for current features problem
+        k_dynamic: {bool} -- specify if indices are changed for each time we train a new surrogate model
+        k_random: {bool} -- random initialization of k_indices for each surrogate features model data
+        generate_only: {bool} -- generate only a specific number of expected real solutions evaluated
+        solutions_folder: {str} -- Path where real evaluated solutions on subset are saved
+        callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
+    """
+    def __init__(self,
+                 initalizer,
+                 evaluator,
+                 sub_evaluator,
+                 operators,
+                 policy,
+                 validator,
+                 surrogates_file_path,
+                 output_log_surrogates,
+                 start_train_surrogates,
+                 ls_train_surrogates,
+                 k_division,
+                 solutions_folder,
+                 k_random=True,
+                 k_dynamic=False,
+                 generate_only=False,
+                 maximise=True,
+                 parent=None):
+
+        # set real evaluator as default
+        super().__init__(initalizer, evaluator, operators, policy,
+                validator, maximise, parent)
+
+        self._n_local_search = 0
+        self._total_n_local_search = 0
+        self._main_evaluator = evaluator
+        self._sub_evaluator = sub_evaluator
+
+        self._surrogates_file_path = surrogates_file_path
+        self._start_train_surrogates = start_train_surrogates
+        self._output_log_surrogates = output_log_surrogates
+
+        self._surrogate_evaluator = None
+        self._surrogate_analyser = None
+
+        self._ls_train_surrogates = ls_train_surrogates
+
+        self._k_division = k_division
+        self._k_dynamic = k_dynamic
+        self._k_random = k_random
+        self._k_indices = None
+        self._surrogates = None
+
+        self._generate_only = generate_only
+
+        # add norm to indentify sub problem data
+        self._solutions_files = []
+        self._solutions_folder = solutions_folder
+
+        if not os.path.exists(self._solutions_folder):
+            os.makedirs(self._solutions_folder)
+
+        # for each sub surrogate, associate its own surrogate file
+        for i in range(self._k_division):
+            index_str = str(i)
+
+            while len(index_str) < 3:
+                index_str = "0" + index_str
+
+            solutions_path = os.path.join(self._solutions_folder, f'surrogate_data_{index_str}')
+
+            # initialize solutions file if not exist
+            if not os.path.exists(solutions_path):
+                with open(solutions_path, 'w') as f:
+                    f.write('x;y\n')
+
+            self._solutions_files.append(solutions_path)
+        
+
+    def define_sub_evaluators(self): 
+        self._sub_evaluators = []
+
+        for i in range(self._k_division):
+            self._sub_evaluators.append(lambda s: self._sub_evaluator(s, self._k_indices[i]))
+
+
+    def init_population(self):
+
+        self._population = []
+
+        # initialize the population
+        for i in range(self._k_division):
+            
+            current_solution = self.pop_initializer(i)
+            
+            # compute fitness using sub-problem evaluator
+            fitness_score = self._sub_evaluators[i](current_solution)
+            current_solution._score = fitness_score
+
+            self._population.append(current_solution)
+
+
+    def pop_initializer(self, index):
+        problem_size = len(self._k_indices[index])
+        return BinarySolution([], problem_size).random(self._validator)
+
+
+    def init_k_split_indices(self):
+        """Initialize k_indices for the new training of surrogate
+
+        Returns:
+            k_indices: [description]
+        """
+        a = list(range(self._bestSolution._size))
+        n_elements = int(math.ceil(self._bestSolution._size / self._k_division)) # use of ceil to avoid loss of data
+
+        # TODO : (check) if random is possible or not
+        # if self._k_random:
+        #     random.shuffle(a) # random subset
+
+        splitted_indices = [a[x:x+n_elements] for x in range(0, len(a), n_elements)]
+
+        return splitted_indices
+
+
+    def train_surrogate(self, index, indices):
+        
+        # 1. Data sets preparation (train and test) use now of specific dataset for surrogate
+        
+        # dynamic number of samples based on dataset real evaluations
+        nsamples = None
+        with open(self._solutions_files[index], 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
+        
+        df = pd.read_csv(self._solutions_files[index], sep=';')
+        # learning set and test set
+        learn = df.sample(training_samples)
+        test = df.drop(learn.index)
+
+        # TODO : (check) not necessary now to select specific features indices into set
+        current_learn = learn.copy()
+        # current_learn.x = current_learn.x.apply(lambda x: ','.join(list(map(str, np.fromstring(x, dtype=int, sep=',')[indices]))))
+
+        current_test = test.copy()
+        # current_test.x = current_test.x.apply(lambda x: ','.join(list(map(str, np.fromstring(x, dtype=int, sep=',')[indices]))))
+
+        problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
+        model = Lasso(alpha=1e-5)
+        surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
+        analysis = FitterAnalysis(logfile=os.path.join(self._output_log_surrogates, f"train_surrogate_{index}.log"), problem=problem)
+        algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
+
+        print(f"Start fitting again the surrogate model n°{index}, using {training_samples} of {nsamples} samples for train dataset")
+        for r in range(10):
+            print(f"Iteration n°{r}: for fitting surrogate n°{index}")
+            algo.run_samples(learn=current_learn, test=current_test, step=10)
+
+        # keep well ordered surrogate into file manager
+        str_index = str(index)
+
+        while len(str_index) < 6:
+            str_index = "0" + str_index
+
+        joblib.dump(algo, os.path.join(self._surrogates_file_path, f'surrogate_{str_index}'))
+
+        return str_index
+        
+
+    def train_surrogates(self):
+        """Retrain if necessary the whole surrogate fitness approximation function
+        """
+        # Following https://gitlab.com/florianlprt/wsao, we re-train the model
+        # ---------------------------------------------------------------------------
+        # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
+        #        model=lasso,alpha=1e-5 \
+        #        surrogate=walsh,order=3 \
+        #        algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
+        #        sample=1000,step=10 \
+        #        analysis=fitter,logfile=out_fit.csv
+        
+        # 1. for each sub space indices, learn new surrogate
+        if not os.path.exists(self._surrogates_file_path):
+            os.makedirs(self._surrogates_file_path)
+
+        num_cores = multiprocessing.cpu_count()
+
+        if not os.path.exists(self._output_log_surrogates):
+            os.makedirs(self._output_log_surrogates)
+
+        Parallel(n_jobs=num_cores)(delayed(self.train_surrogate)(index, indices) for index, indices in enumerate(self._k_indices))
+
+
+    def load_surrogates(self):
+        """Load algorithm with surrogate model and create lambda evaluator function
+        """
+
+        # need to first train surrogate if not exist
+        if not os.path.exists(self._surrogates_file_path):
+            self.train_surrogates()
+
+        self._surrogates = []
+
+        surrogates_path = sorted(os.listdir(self._surrogates_file_path))
+
+        for surrogate_p in surrogates_path:
+            model_path = os.path.join(self._surrogates_file_path, surrogate_p)
+            surrogate_model = joblib.load(model_path)
+
+            self._surrogates.append(surrogate_model)
+
+    
+    def surrogate_evaluator(self, solution):
+        """Compute mean of each surrogate model using targeted indices
+
+        Args:
+            solution: {Solution} -- current solution to evaluate using multi-surrogate evaluation
+
+        Return:
+            mean: {float} -- mean score of surrogate models
+        """
+        scores = []
+        solution_data = np.array(solution._data)
+
+        # for each indices set, get trained surrogate model and made prediction score
+        for i, indices in enumerate(self._k_indices):
+            current_data = solution_data[indices]
+            current_score = self._surrogates[i].surrogate.predict([current_data])[0]
+            scores.append(current_score)
+
+        return sum(scores) / len(scores)
+            
+    def surrogates_coefficient_of_determination(self):
+        """Compute r² for each sub surrogate model
+
+        Return:
+            r_squared_scores: [{float}] -- mean score of r_squred obtained from surrogate models
+        """
+
+        # for each indices set, get r^2 surrogate model and made prediction score
+
+        num_cores = multiprocessing.cpu_count()
+
+        r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
+
+        # for i, _ in enumerate(self._k_indices):
+        #     r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
+        #     r_squared_scores.append(r_squared)
+
+        #print(r_squared_scores)
+
+        return r_squared_scores
+
+    def surrogates_mae(self):
+        """Compute mae for each sub surrogate model
+
+        Return:
+            mae_scores: [{float}] -- mae scores from model
+        """
+
+        # for each indices set, get r^2 surrogate model and made prediction score
+
+        num_cores = multiprocessing.cpu_count()
+
+        mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
+
+        # for i, _ in enumerate(self._k_indices):
+        #     r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
+        #     r_squared_scores.append(r_squared)
+
+        #print(mae_scores)
+
+        return mae_scores
+
+    def add_to_surrogate(self, solution, index):
+
+        # save real evaluated solution into specific file for surrogate
+        with open(self._solutions_files[index], 'a') as f:
+
+            line = ""
+
+            for index, e in enumerate(solution._data):
+
+                line += str(e)
+                
+                if index < len(solution._data) - 1:
+                    line += ","
+
+            line += ";"
+            line += str(solution._score)
+
+            f.write(line + "\n")
+
+    def run(self, evaluations, ls_evaluations=100):
+        """
+        Run the iterated local search algorithm using local search (EvE compromise)
+
+        Args:
+            evaluations: {int} -- number of global evaluations for ILS
+            ls_evaluations: {int} -- number of Local search evaluations (default: 100)
+
+        Returns:
+            {Solution} -- best solution found
+        """
+
+        # by default use of mother method to initialize variables
+        super().run(evaluations)
+
+        # initialize current solution
+        self.initRun()
+
+        # based on best solution found, initialize k pool indices
+        if self._k_indices == None:
+            self._k_indices = self.init_k_split_indices()
+
+        # enable resuming for ILS
+        self.resume()
+
+        # here we each surrogate sub evaluator
+        self.define_sub_evaluators()
+        self.init_population()
+
+        # count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
+
+        if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
+
+            # for each sub problem (surrogate)
+            for i in range(self._k_division):
+
+                nsamples = None
+                with open(self._solutions_files[i], 'r') as f:
+                    nsamples = len(f.readlines()) - 1 # avoid header
+
+                if nsamples is None:
+                    nsamples = 0
+
+                # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
+                # using randomly generated solutions (in order to cover seearch space)
+                while self._start_train_surrogates > nsamples:
+
+                    print(f'Real solutions extraction for surrogate n°{i}: {nsamples} of {self._start_train_surrogates}')
+                    
+                    newSolution = self.pop_initializer(i)
+
+                    # evaluate new solution
+                    newSolution.evaluate(self._sub_evaluators[i])
+
+                    # add it to surrogate pool
+                    self.add_to_surrogate(newSolution, i)
+
+                    nsamples += 1
+
+                    # increase number of evaluation
+                    self.increaseEvaluation()
+                
+        # stop this process after generating solution
+        if self._generate_only:
+            return self._bestSolution
+
+        # train surrogate on real evaluated solutions file
+        self.train_surrogates()
+        self.load_surrogates()
+
+        # local search algorithm implementation
+        while not self.stop():
+
+            # set current evaluator based on used or not of surrogate function
+            self._evaluator = self.surrogate_evaluator if self._start_train_surrogates <= self.getGlobalEvaluation() else self._main_evaluator
+
+
+            local_search_list = [] 
+
+            for i in range(self._k_division):
+                # create new local search instance
+                # passing global evaluation param from ILS
+
+                # use specific initializer for pop_initialiser
+                # specific surrogate evaluator for this local search
+                # TODO : check this part
+                ls = LocalSearchSurrogate(lambda index=i: self.pop_initializer(index),
+                            lambda s: self._surrogates[i].surrogate.predict([s._data])[0],
+                            self._operators,
+                            self._policy,
+                            self._validator,
+                            self._maximise,
+                            parent=self)
+
+                # add same callbacks
+                for callback in self._callbacks:
+                    ls.addCallback(callback)
+
+                local_search_list.append(ls)
+
+            # parallel run of local search
+            num_cores = multiprocessing.cpu_count()
+            ls_solutions = Parallel(n_jobs=num_cores)(delayed(ls.run)(ls_evaluations) for ls in local_search_list)
+
+            # create and search solution from local search
+            self._numberOfEvaluations += ls_evaluations * self._k_division
+
+            # for each sub problem, update population
+            for i, sub_problem_solution in enumerate(ls_solutions):
+
+                # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
+                # Update : always add new solution into surrogate pool, not only if solution is better
+                #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
+                if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                    # if better solution found from local search, retrained the found solution and test again
+                    # without use of surrogate
+                    fitness_score = self._sub_evaluators[i](sub_problem_solution)
+                    # self.increaseEvaluation() # dot not add evaluation
+
+                    sub_problem_solution._score = fitness_score
+
+                    # if solution is really better after real evaluation, then we replace
+                    if self.isBetter(self._population[i]):
+                        self._population[i] = sub_problem_solution
+
+                    self.add_to_surrogate(sub_problem_solution, i)
+
+            
+            # main best solution update
+            if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # need to create virtual solution
+                obtained_solution_data = np.array([ s._data for s in ls_solutions ]).flatten().tolist()
+
+                # init random solution 
+                current_solution = self._initializer()
+                current_solution.data = obtained_solution_data
+
+                fitness_score = self._main_evaluator(current_solution)
+
+                # new computed solution score
+                current_solution._score = fitness_score
+
+                # if solution is really better after real evaluation, then we replace
+                if self.isBetter(current_solution):
+                    self._bestSolution = current_solution
+
+                print(f'-- Current solution obtained is {current_solution._score} vs. {self._bestSolution._score}')
+                self.progress()
+    
+
+
+            # check using specific dynamic criteria based on r^2
+            r_squared_scores = self.surrogates_coefficient_of_determination()
+            r_squared = sum(r_squared_scores) / len(r_squared_scores)
+
+            mae_scores = self.surrogates_mae()
+            mae_score = sum(mae_scores) / len(mae_scores)
+
+            r_squared_value = 0 if r_squared < 0 else r_squared
+
+            training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
+
+            # avoid issue when lauching every each local search
+            if training_surrogate_every <= 0:
+                training_surrogate_every = 1
+                
+            print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
+            
+            # check if necessary or not to train again surrogate
+            if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # reinitialization of k_indices for the new training
+                # TODO : remove this part temporally
+                # if self._k_dynamic:
+                #     print(f"Reinitialization of k_indices using `k={self._k_division} `for the new training")
+                #     self.init_k_split_indices()
+
+                # train again surrogate on real evaluated solutions file
+                start_training = time.time()
+                self.train_surrogates()
+                training_time = time.time() - start_training
+
+                self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared_scores, r_squared, mae_scores, mae_score, self.getGlobalMaxEvaluation(), self._total_n_local_search)
+
+                # reload new surrogate function
+                self.load_surrogates()
+
+                # reinitialize number of local search
+                self._n_local_search = 0
+
+            # increase number of local search done
+            self._n_local_search += 1
+            self._total_n_local_search += 1
+
+            self.information()
+
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
+
+        self.end()
+        return self._bestSolution
+
+    def addCallback(self, callback):
+        """Add new callback to algorithm specifying usefull parameters
+
+        Args:
+            callback: {Callback} -- specific Callback instance
+        """
+        # specify current main algorithm reference
+        if self.getParent() is not None:
+            callback.setAlgo(self.getParent())
+        else:
+            callback.setAlgo(self)
+
+        # set as new
+        self._callbacks.append(callback)

+ 5 - 2
optimization/ILSMultiSurrogate.py

@@ -379,7 +379,7 @@ class ILSMultiSurrogate(Algorithm):
                 fitness_score = self._main_evaluator(newSolution)
                 # self.increaseEvaluation() # dot not add evaluation
 
-                newSolution.score = fitness_score
+                newSolution._score = fitness_score
 
                 # if solution is really better after real evaluation, then we replace
                 if self.isBetter(newSolution):
@@ -396,11 +396,14 @@ class ILSMultiSurrogate(Algorithm):
             mae_scores = self.surrogates_mae()
             mae_score = sum(mae_scores) / len(mae_scores)
 
-            training_surrogate_every = int(abs(r_squared) * self._ls_train_surrogates) # use of absolute value for r²
+            r_squared_value = 0 if r_squared < 0 else r_squared
+
+            training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
 
             # avoid issue when lauching every each local search
             if training_surrogate_every <= 0:
                 training_surrogate_every = 1
+                
             print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
 
             # check if necessary or not to train again surrogate