|
@@ -10,65 +10,43 @@ fi
|
|
|
if [ -z "$2" ]
|
|
|
then
|
|
|
echo "No argument supplied"
|
|
|
- echo "Need of metric information"
|
|
|
+ echo "Need of feature information"
|
|
|
exit 1
|
|
|
fi
|
|
|
|
|
|
result_filename="results/models_comparisons.csv"
|
|
|
VECTOR_SIZE=200
|
|
|
size=$1
|
|
|
-metric=$2
|
|
|
+feature=$2
|
|
|
|
|
|
# selection of four scenes (only maxwell)
|
|
|
scenes="A, D, G, H"
|
|
|
|
|
|
-half=$(($size/2))
|
|
|
-start=-$half
|
|
|
-for counter in {0..4}; do
|
|
|
- end=$(($start+$size))
|
|
|
+start=0
|
|
|
+end=$size
|
|
|
|
|
|
- if [ "$end" -gt "$VECTOR_SIZE" ]; then
|
|
|
- start=$(($VECTOR_SIZE-$size))
|
|
|
- end=$(($VECTOR_SIZE))
|
|
|
- fi
|
|
|
+for nb_zones in {4,6,8,10,12}; do
|
|
|
|
|
|
- if [ "$start" -lt "0" ]; then
|
|
|
- start=$((0))
|
|
|
- end=$(($size))
|
|
|
- fi
|
|
|
+ for mode in {"svd","svdn","svdne"}; do
|
|
|
+ for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
|
|
|
|
|
|
- for nb_zones in {4,6,8,10,12}; do
|
|
|
+ FILENAME="data/${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${feature}_${mode}"
|
|
|
+ MODEL_NAME="${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${feature}_${mode}"
|
|
|
+ CUSTOM_MIN_MAX_FILENAME="N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${feature}_${mode}_min_max"
|
|
|
|
|
|
- echo $start $end
|
|
|
+ echo $FILENAME
|
|
|
|
|
|
- for mode in {"svd","svdn","svdne"}; do
|
|
|
- for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
|
|
|
+ # only compute if necessary (perhaps server will fall.. Just in case)
|
|
|
+ if grep -q "${MODEL_NAME}" "${result_filename}"; then
|
|
|
|
|
|
- FILENAME="data/${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${metric}_${mode}"
|
|
|
- MODEL_NAME="${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${metric}_${mode}"
|
|
|
- CUSTOM_MIN_MAX_FILENAME="N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${metric}_${mode}_min_max"
|
|
|
+ echo "${MODEL_NAME} results already generated..."
|
|
|
+ else
|
|
|
+ python generate/generate_data_model_random_center.py --output ${FILENAME} --interval "${start},${end}" --kind ${mode} --feature ${feature} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 10 --random 1 --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
|
+ python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
|
|
|
|
|
|
- echo $FILENAME
|
|
|
-
|
|
|
- # only compute if necessary (perhaps server will fall.. Just in case)
|
|
|
- if grep -q "${MODEL_NAME}" "${result_filename}"; then
|
|
|
-
|
|
|
- echo "${MODEL_NAME} results already generated..."
|
|
|
- else
|
|
|
- python generate/generate_data_model_random_center.py --output ${FILENAME} --interval "${start},${end}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 10 --random 1 --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
|
- python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model}
|
|
|
-
|
|
|
- #python prediction/predict_seuil_expe_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric} --limit_detection '2' --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
|
- python others/save_model_result_in_md_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
|
|
|
- fi
|
|
|
- done
|
|
|
+ #python prediction/predict_seuil_expe_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --feature ${feature} --limit_detection '2' --custom ${CUSTOM_MIN_MAX_FILENAME}
|
|
|
+ python others/save_model_result_in_md_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --feature ${feature}
|
|
|
+ fi
|
|
|
done
|
|
|
done
|
|
|
-
|
|
|
- if [ "$counter" -eq "0" ]; then
|
|
|
- start=$(($start+50-$half))
|
|
|
- else
|
|
|
- start=$(($start+50))
|
|
|
- fi
|
|
|
-
|
|
|
done
|