|
@@ -0,0 +1,91 @@
|
|
|
+"""Basic Checkpoint class implementation
|
|
|
+"""
|
|
|
+
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import logging
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+# module imports
|
|
|
+from macop.callbacks.Callback import Callback
|
|
|
+from macop.utils.color import macop_text, macop_line
|
|
|
+
|
|
|
+
|
|
|
+class SurrogateMonoCheckpoint(Callback):
|
|
|
+ """
|
|
|
+ SurrogateCheckpoint is used for logging training data information about surrogate
|
|
|
+
|
|
|
+ Attributes:
|
|
|
+ algo: {Algorithm} -- main algorithm instance reference
|
|
|
+ every: {int} -- checkpoint frequency used (based on number of evaluations)
|
|
|
+ filepath: {str} -- file path where checkpoints will be saved
|
|
|
+ """
|
|
|
+ def run(self):
|
|
|
+ """
|
|
|
+ Check if necessary to do backup based on `every` variable
|
|
|
+ """
|
|
|
+ # get current best solution
|
|
|
+ solution = self._algo._bestSolution
|
|
|
+ surrogate_analyser = self._algo._surrogate_analyser
|
|
|
+
|
|
|
+ # Do nothing is surrogate analyser does not exist
|
|
|
+ if surrogate_analyser is None:
|
|
|
+ return
|
|
|
+
|
|
|
+ currentEvaluation = self._algo.getGlobalEvaluation()
|
|
|
+
|
|
|
+ # backup if necessary
|
|
|
+ if currentEvaluation % self._every == 0:
|
|
|
+
|
|
|
+ logging.info(f"Surrogate analysis checkpoint is done into {self._filepath}")
|
|
|
+
|
|
|
+ solutionData = ""
|
|
|
+ solutionSize = len(solution._data)
|
|
|
+
|
|
|
+ for index, val in enumerate(solution._data):
|
|
|
+ solutionData += str(val)
|
|
|
+
|
|
|
+ if index < solutionSize - 1:
|
|
|
+ solutionData += ' '
|
|
|
+
|
|
|
+ # get score of r² and mae
|
|
|
+
|
|
|
+ line = str(currentEvaluation) + ';' + str(surrogate_analyser._n_local_search) + ';' + str(surrogate_analyser._every_ls) + ';' + str(surrogate_analyser._time) + ';' + str(surrogate_analyser._r2) \
|
|
|
+ + ';' + str(surrogate_analyser._mae) \
|
|
|
+ + ';' + solutionData + ';' + str(solution.fitness) + ';\n'
|
|
|
+
|
|
|
+ # check if file exists
|
|
|
+ if not os.path.exists(self._filepath):
|
|
|
+ with open(self._filepath, 'w') as f:
|
|
|
+ f.write(line)
|
|
|
+ else:
|
|
|
+ with open(self._filepath, 'a') as f:
|
|
|
+ f.write(line)
|
|
|
+
|
|
|
+ def load(self):
|
|
|
+ """
|
|
|
+ only load global n local search
|
|
|
+ """
|
|
|
+
|
|
|
+ if os.path.exists(self._filepath):
|
|
|
+
|
|
|
+ logging.info('Load n local search')
|
|
|
+ with open(self._filepath) as f:
|
|
|
+
|
|
|
+ # get last line and read data
|
|
|
+ lastline = f.readlines()[-1].replace(';\n', '')
|
|
|
+ data = lastline.split(';')
|
|
|
+
|
|
|
+ n_local_search = int(data[1])
|
|
|
+
|
|
|
+ # set k_indices into main algorithm
|
|
|
+ self._algo._total_n_local_search = n_local_search
|
|
|
+
|
|
|
+ print(macop_line())
|
|
|
+ print(macop_text(f'SurrogateMonoCheckpoint found from `{self._filepath}` file.'))
|
|
|
+
|
|
|
+ else:
|
|
|
+ print(macop_text('No backup found...'))
|
|
|
+ logging.info("Can't load Surrogate backup... Backup filepath not valid in SurrogateCheckpoint")
|
|
|
+
|
|
|
+ print(macop_line())
|