|
@@ -7,7 +7,7 @@ from sklearn.ensemble import GradientBoostingClassifier
|
|
|
from sklearn.feature_selection import RFECV
|
|
|
import sklearn.svm as svm
|
|
|
from sklearn.metrics import accuracy_score
|
|
|
-#from thundersvm import SVC
|
|
|
+from thundersvm import SVC
|
|
|
|
|
|
# variables and parameters
|
|
|
n_predict = 0
|
|
@@ -41,19 +41,18 @@ def svm_model(X_train, y_train):
|
|
|
|
|
|
def _get_best_gpu_model(X_train, y_train):
|
|
|
|
|
|
- # Cs = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100, 1000]
|
|
|
- # gammas = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100]
|
|
|
- # param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
+ Cs = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100, 1000]
|
|
|
+ gammas = [0.001, 0.01, 0.1, 1, 2, 5, 10, 100]
|
|
|
+ param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
|
|
|
- # svc = SVC(probability=True, class_weight='balanced')
|
|
|
- # clf = GridSearchCV(svc, param_grid, cv=10, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
|
+ svc = SVC(probability=True, class_weight='balanced')
|
|
|
+ clf = GridSearchCV(svc, param_grid, cv=10, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
|
|
|
|
|
|
- # clf.fit(X_train, y_train)
|
|
|
+ clf.fit(X_train, y_train)
|
|
|
|
|
|
- # model = clf.best_estimator_
|
|
|
+ model = clf.best_estimator_
|
|
|
|
|
|
- # return model
|
|
|
- pass
|
|
|
+ return model
|
|
|
|
|
|
def svm_gpu(X_train, y_train):
|
|
|
|