|
@@ -0,0 +1,137 @@
|
|
|
+import os, argparse
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.preprocessing import MinMaxScaler
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.metrics import roc_auc_score, accuracy_score
|
|
|
+import sklearn.svm as svm
|
|
|
+
|
|
|
+from methods import features_selection_list, features_selection_method
|
|
|
+
|
|
|
+
|
|
|
+def train_model(X_train, y_train):
|
|
|
+
|
|
|
+ print ('Creating model...')
|
|
|
+
|
|
|
+ Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
|
|
|
+ gammas = [0.001, 0.01, 0.1,10, 100, 1000]
|
|
|
+ param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
|
|
|
+
|
|
|
+ svc = svm.SVC(probability=True, class_weight='balanced')
|
|
|
+ clf = GridSearchCV(svc, param_grid, cv=2, verbose=1, n_jobs=-1)
|
|
|
+
|
|
|
+ clf.fit(X_train, y_train)
|
|
|
+
|
|
|
+ model = clf.best_estimator_
|
|
|
+
|
|
|
+ return model
|
|
|
+
|
|
|
+def loadDataset(filename):
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ dataset = pd.read_csv(filename, sep=',')
|
|
|
+
|
|
|
+
|
|
|
+ min_label_value = min(dataset.iloc[:, -1])
|
|
|
+ max_label_value = max(dataset.iloc[:, -1])
|
|
|
+
|
|
|
+ dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
|
|
|
+ dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
|
|
|
+
|
|
|
+ X_dataset = dataset.iloc[:, :-1]
|
|
|
+ y_dataset = dataset.iloc[:, -1]
|
|
|
+
|
|
|
+ problem_size = len(X_dataset.columns)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ scaler = MinMaxScaler()
|
|
|
+
|
|
|
+ X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
|
|
|
+
|
|
|
+
|
|
|
+ X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
|
|
|
+
|
|
|
+ return X_train, y_train, X_test, y_test, problem_size
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Get features extraction from specific method")
|
|
|
+
|
|
|
+ parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
|
|
|
+ parser.add_argument('--method', type=str, help='method name to use', choices=features_selection_list, required=True)
|
|
|
+ parser.add_argument('--params', type=str, help='params used for the current selected method', required=True)
|
|
|
+ parser.add_argument('--ntrain', type=int, help='number of training in order to keep mean of score', default=1)
|
|
|
+ parser.add_argument('--output', type=str, help='output features selection results')
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_data_file = args.data
|
|
|
+ p_method = args.method
|
|
|
+ p_params = args.params
|
|
|
+ p_ntrain = args.ntrain
|
|
|
+ p_output = args.output
|
|
|
+
|
|
|
+
|
|
|
+ X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
|
|
|
+
|
|
|
+ features_indices = features_selection_method(p_method, p_params, X_train, y_train, problem_size)
|
|
|
+
|
|
|
+ print(f'Selected features {len(features_indices)} over {problem_size}')
|
|
|
+
|
|
|
+
|
|
|
+ X_train_reduced = X_train[:, features_indices]
|
|
|
+ X_test_reduced = X_test[:, features_indices]
|
|
|
+
|
|
|
+
|
|
|
+ auc_scores = []
|
|
|
+ acc_scores = []
|
|
|
+
|
|
|
+ for i in range(p_ntrain):
|
|
|
+
|
|
|
+
|
|
|
+ model = train_model(X_train_reduced, y_train)
|
|
|
+
|
|
|
+
|
|
|
+ y_test_model = model.predict(X_test_reduced)
|
|
|
+ y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_predict)
|
|
|
+ test_acc = accuracy_score(y_test, y_test_predict)
|
|
|
+
|
|
|
+ print(f'Run n°{i}: {test_roc_auc} (AUC ROC)')
|
|
|
+
|
|
|
+
|
|
|
+ auc_scores.append(test_roc_auc)
|
|
|
+ acc_scores.append(test_acc)
|
|
|
+
|
|
|
+ mean_auc_score = sum(auc_scores) / len(auc_scores)
|
|
|
+ mean_acc_score = sum(acc_scores) / len(acc_scores)
|
|
|
+
|
|
|
+ print(f'Model performance using {p_method} (params: {p_params}) is of {mean_auc_score:.2f}')
|
|
|
+
|
|
|
+
|
|
|
+ header_line = 'dataset;method;params;ntrain;n_features;acc_test;auc_test;features_indices\n'
|
|
|
+ data_line = f'{p_data_file};{p_method};{p_params};{p_ntrain};{len(features_indices)};{mean_acc_score};{mean_auc_score};{" ".join(list(map(str, features_indices)))}\n'
|
|
|
+
|
|
|
+ output_folder, _ = os.path.split(p_output)
|
|
|
+
|
|
|
+ if len(output_folder) > 0:
|
|
|
+ if not os.path.exists(output_folder):
|
|
|
+ os.makedirs(output_folder)
|
|
|
+
|
|
|
+ if not os.path.exists(p_output):
|
|
|
+ with open(p_output, 'w') as f:
|
|
|
+ f.write(header_line)
|
|
|
+
|
|
|
+ with open(p_output, 'a') as f:
|
|
|
+ f.write(data_line)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|