123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- # main imports
- import os
- import sys
- import argparse
- import pandas as pd
- import numpy as np
- import logging
- # model imports
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.linear_model import LogisticRegression
- from sklearn.ensemble import RandomForestClassifier, VotingClassifier
- import sklearn.svm as svm
- from sklearn.utils import shuffle
- from sklearn.externals import joblib
- from sklearn.metrics import roc_auc_score
- from sklearn.model_selection import cross_val_score
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- import models as mdl
- from optimization.algorithms.IteratedLocalSearch import IteratedLocalSearch as ILS
- from optimization.solutions.BinarySolution import BinarySolution
- from optimization.operators.mutators.SimpleMutation import SimpleMutation
- from optimization.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
- from optimization.operators.crossovers.SimpleCrossover import SimpleCrossover
- from optimization.operators.policies.RandomPolicy import RandomPolicy
- # variables and parameters
- models_list = cfg.models_names_list
- number_of_values = 26
- ils_iteration = 10000
- ls_iteration = 20
- # default validator
- def validator(solution):
- if list(solution.data).count(1) < 5:
- return False
- return True
- # init solution (13 filters)
- def init():
- return BinarySolution([], 13).random(validator)
- def loadDataset(filename):
- ########################
- # 1. Get and prepare data
- ########################
- dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- # use of the whole data set for training
- x_dataset_train = final_df_train.iloc[:,1:]
- x_dataset_test = final_df_test.iloc[:,1:]
- y_dataset_train = final_df_train.iloc[:,0]
- y_dataset_test = final_df_test.iloc[:,0]
- return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
- def main():
- parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)')
- parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list)
- args = parser.parse_args()
- p_data_file = args.data
- p_choice = args.choice
- # load data from file
- x_train, y_train, x_test, y_test = loadDataset(p_data_file)
- # create `logs` folder if necessary
- if not os.path.exists(cfg.logs_folder):
- os.makedirs(cfg.logs_folder)
- logging.basicConfig(format='%(asctime)s %(message)s', filename='logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
- # define evaluate function here (need of data information)
- def evaluate(solution):
- # get indices of filters data to use (filters selection from solution)
- indices = []
- for index, value in enumerate(solution.data):
- if value == 1:
- indices.append(index*2)
- indices.append(index*2+1)
- # keep only selected filters from solution
- x_train_filters = x_train.iloc[:, indices]
- y_train_filters = y_train
- x_test_filters = x_test.iloc[:, indices]
- model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
-
- y_test_model = model.predict(x_test_filters)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
- return test_roc_auc
- # prepare optimization algorithm
- updators = [SimpleBinaryMutation(), SimpleMutation(), SimpleCrossover()]
- policy = RandomPolicy(updators)
- algo = ILS(init, evaluate, updators, policy, validator, True)
- bestSol = algo.run(ils_iteration, ls_iteration)
- # print best solution found
- print("Found ", bestSol)
- # save model information into .csv file
- if not os.path.exists(cfg.results_information_folder):
- os.makedirs(cfg.results_information_folder)
- filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_result_filename)
- line_info = p_data_file + ';' + str(ils_iteration) + ';' + str(ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(bestSol.fitness())
- with open(filename_path, 'a') as f:
- f.write(line_info + '\n')
-
- print('Result saved into %s' % filename_path)
- if __name__ == "__main__":
- main()
|