123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- """Iterated Local Search Algorithm implementation using surrogate as fitness approximation
- """
- # main imports
- import os
- import logging
- import joblib
- # module imports
- from macop.algorithms.Algorithm import Algorithm
- from .LSSurrogate import LocalSearchSurrogate
- from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
- LassoCV, ElasticNet)
- from wsao.sao.problems.nd3dproblem import ND3DProblem
- from wsao.sao.surrogates.walsh import WalshSurrogate
- from wsao.sao.algos.fitter import FitterAlgo
- from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
- class ILSSurrogate(Algorithm):
- """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using surrogate
- Attributes:
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- ls_iteration: {int} -- number of evaluation for each local search algorithm
- surrogate_file: {str} -- Surrogate model file to load (model trained using https://gitlab.com/florianlprt/wsao)
- start_train_surrogate: {int} -- number of evaluation expected before start training and use surrogate
- surrogate: {Surrogate} -- Surrogate model instance loaded
- ls_train_surrogate: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
- solutions_file: {str} -- Path where real evaluated solutions are saved in order to train surrogate again
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def __init__(self,
- _initalizer,
- _evaluator,
- _operators,
- _policy,
- _validator,
- _surrogate_file_path,
- _start_train_surrogate,
- _ls_train_surrogate,
- _solutions_file,
- _maximise=True,
- _parent=None):
- # set real evaluator as default
- super().__init__(_initalizer, _evaluator, _operators, _policy,
- _validator, _maximise, _parent)
- self.n_local_search = 0
- self.surrogate_file_path = _surrogate_file_path
- self.start_train_surrogate = _start_train_surrogate
- self.surrogate_evaluator = None
- self.ls_train_surrogate = _ls_train_surrogate
- self.solutions_file = _solutions_file
- def train_surrogate(self):
- """etrain if necessary the whole surrogate fitness approximation function
- """
- # Following https://gitlab.com/florianlprt/wsao, we re-train the model
- # ---------------------------------------------------------------------------
- # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
- # model=lasso,alpha=1e-5 \
- # surrogate=walsh,order=3 \
- # algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
- # sample=1000,step=10 \
- # analysis=fitter,logfile=out_fit.csv
- problem = ND3DProblem(size=len(self.bestSolution.data)) # problem size based on best solution size (need to improve...)
- model = Lasso(alpha=1e-5)
- surrogate = WalshSurrogate(order=3, size=problem.size, model=model)
- analysis = FitterAnalysis(logfile="train_surrogate.log", problem=problem)
- algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
- print("Start fitting again the surrogate model")
- for r in range(10):
- print("Iteration n°{0}: for fitting surrogate".format(r))
- algo.run(samplefile=self.solutions_file, sample=100, step=10)
- joblib.dump(algo, self.surrogate_file_path)
- def load_surrogate(self):
- """Load algorithm with surrogate model and create lambda evaluator function
- """
- # need to first train surrogate if not exist
- if not os.path.exists(self.surrogate_file_path):
- self.train_surrogate()
- self.surrogate = joblib.load(self.surrogate_file_path)
- # update evaluator function
- self.surrogate_evaluator = lambda s: self.surrogate.surrogate.predict([s.data])[0]
- def add_to_surrogate(self, solution):
- # save real evaluated solution into specific file for surrogate
- with open(self.solutions_file, 'a') as f:
- line = ""
- for index, e in enumerate(solution.data):
- line += str(e)
-
- if index < len(solution.data) - 1:
- line += ","
- line += ";"
- line += str(solution.score)
- f.write(line + "\n")
- def run(self, _evaluations, _ls_evaluations=100):
- """
- Run the iterated local search algorithm using local search (EvE compromise)
- Args:
- _evaluations: {int} -- number of global evaluations for ILS
- _ls_evaluations: {int} -- number of Local search evaluations (default: 100)
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(_evaluations)
- # enable resuming for ILS
- self.resume()
- # initialize current solution
- self.initRun()
- if self.start_train_surrogate > self.getGlobalEvaluation():
-
- # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
- # using randomly generated solutions (in order to cover seearch space)
- while self.start_train_surrogate > self.getGlobalEvaluation():
-
- newSolution = self.initializer()
- # evaluate new solution
- newSolution.evaluate(self.evaluator)
- # add it to surrogate pool
- self.add_to_surrogate(newSolution)
- self.increaseEvaluation()
- # train surrogate on real evaluated solutions file
- self.train_surrogate()
- self.load_surrogate()
- # local search algorithm implementation
- while not self.stop():
-
- # set current evaluator based on used or not of surrogate function
- current_evaluator = self.surrogate_evaluator if self.start_train_surrogate < self.getGlobalEvaluation() else self.evaluator
- # create new local search instance
- # passing global evaluation param from ILS
- ls = LocalSearchSurrogate(self.initializer,
- current_evaluator,
- self.operators,
- self.policy,
- self.validator,
- self.maximise,
- _parent=self)
- # add same callbacks
- for callback in self.callbacks:
- ls.addCallback(callback)
- # create and search solution from local search
- newSolution = ls.run(_ls_evaluations)
- # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
- if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
- # if better solution found from local search, retrained the found solution and test again
- # without use of surrogate
- fitness_score = self.evaluator(newSolution)
- self.increaseEvaluation()
- newSolution.score = fitness_score
- # if solution is really better after real evaluation, then we replace
- if self.isBetter(newSolution):
- self.bestSolution = newSolution
- self.add_to_surrogate(newSolution)
- # check if necessary or not to train again surrogate
- if self.n_local_search % self.ls_train_surrogate == 0 and self.start_train_surrogate < self.getGlobalEvaluation():
- # train again surrogate on real evaluated solutions file
- self.train_surrogate()
- # reload new surrogate function
- self.load_surrogate()
- # increase number of local search done
- self.n_local_search += 1
- self.information()
- logging.info("End of %s, best solution found %s" %
- (type(self).__name__, self.bestSolution))
- self.end()
- return self.bestSolution
|