123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- """Basic Checkpoint class implementation
- """
- # main imports
- import os
- import logging
- import numpy as np
- # module imports
- from macop.callbacks.Callback import Callback
- from macop.utils.color import macop_text, macop_line
- class MultiSurrogateCheckpoint(Callback):
- """
- MultiSurrogateCheckpoint is used for keep track of sub-surrogate problem indices
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current best solution
- k_indices = self._algo._k_indices
- # Do nothing is surrogate analyser does not exist
- if k_indices is None:
- return
- currentEvaluation = self._algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self._every == 0:
- logging.info(f"Multi surrogate analysis checkpoint is done into {self._filepath}")
- line = str(currentEvaluation) + ';'
- for indices in k_indices:
-
- indices_data = ""
- indices_size = len(indices)
- for index, val in enumerate(indices):
- indices_data += str(val)
- if index < indices_size - 1:
- indices_data += ' '
- line += indices_data + ';'
- line += '\n'
- # check if file exists
- if not os.path.exists(self._filepath):
- with open(self._filepath, 'w') as f:
- f.write(line)
- else:
- with open(self._filepath, 'a') as f:
- f.write(line)
- def load(self):
- """
- Load nothing there, as we only log surrogate training information
- """
- if os.path.exists(self._filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self._filepath) as f:
- # get last line and read data
- lastline = f.readlines()[-1].replace(';\n', '')
- data = lastline.split(';')
- k_indices = data[1:]
- k_indices_final = []
- for indices in k_indices:
- k_indices_final.append(list(map(int, indices.split(' '))))
- # set k_indices into main algorithm
- self._algo._k_indices = k_indices_final
- print(macop_line())
- print(macop_text(f' MultiSurrogateCheckpoint found from `{self._filepath}` file.'))
- else:
- print(macop_text('No backup found... Start running using new `k_indices` values'))
- logging.info("Can't load MultiSurrogate backup... Backup filepath not valid in MultiSurrogateCheckpoint")
- print(macop_line())
|