123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- # main imports
- import sys, os, argparse
- import subprocess
- import time
- import numpy as np
- # image processing imports
- from ipfml.processing import segmentation
- from PIL import Image
- # models imports
- from sklearn.externals import joblib
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- # variables and parameters
- scenes_path = cfg.dataset_path
- min_max_filename = cfg.min_max_filename_extension
- threshold_expe_filename = cfg.seuil_expe_filename
- threshold_map_folder = cfg.threshold_map_folder
- threshold_map_file_prefix = cfg.threshold_map_folder + "_"
- zones = cfg.zones_indices
- normalization_choices = cfg.normalization_choices
- features_choices = cfg.features_choices_labels
- simulation_curves_zones = "simulation_curves_zones_"
- tmp_filename = '/tmp/__model__img_to_predict.png'
- current_dirpath = os.getcwd()
- def main():
- p_custom = False
-
- parser = argparse.ArgumentParser(description="Script which predicts threshold using specific model")
- parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use')
- parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=normalization_choices)
- parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices)
- parser.add_argument('--scene', type=str, help='scene to use for simulation', choices=cfg.scenes_indices)
- #parser.add_argument('--limit_detection', type=int, help='Specify number of same prediction to stop threshold prediction', default=2)
- parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
- parser.add_argument('--filter', type=str, help='filter reduction solution used', choices=cfg.filter_reduction_choices)
- args = parser.parse_args()
- # keep p_interval as it is
- p_solution = args.solution
- p_model_file = args.model
- p_mode = args.mode
- p_feature = args.feature
- p_scene = args.scene
- #p_limit = args.limit
- p_custom = args.custom
- p_filter = args.filter
- # get scene name using index
-
- # list all possibles choices of renderer
- scenes_list = cfg.scenes_names
- scenes_indices = cfg.scenes_indices
- scene_index = scenes_indices.index(p_scene.strip())
- scene_name = scenes_list[scene_index]
- print(scene_name)
- scene_path = os.path.join(scenes_path, scene_name)
- threshold_expes = []
- threshold_expes_found = []
- block_predictions_str = []
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- start_quality_image = dt.get_scene_image_quality(scene_images[0])
- end_quality_image = dt.get_scene_image_quality(scene_images[-1])
- # using first two images find the step of quality used
- quality_step_image = dt.get_scene_image_quality(scene_images[1]) - start_quality_image
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zone_folder = "zone"+index_str
- threshold_path_file = os.path.join(os.path.join(scene_path, zone_folder), threshold_expe_filename)
- with open(threshold_path_file) as f:
- threshold = int(f.readline())
- threshold_expes.append(threshold)
- # Initialize default data to get detected model threshold found
- threshold_expes_found.append(end_quality_image) # by default use max
- block_predictions_str.append(index_str + ";" + p_model_file + ";" + str(threshold) + ";" + str(start_quality_image) + ";" + str(quality_step_image))
- # for each images
- for img_path in scene_images:
- current_img = Image.open(img_path)
- current_quality_image = dt.get_scene_image_quality(img_path)
- img_blocks = segmentation.divide_in_blocks(current_img, (200, 200))
- for id_block, block in enumerate(img_blocks):
- # check only if necessary for this scene (not already detected)
- #if not threshold_expes_detected[id_block]:
- tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.joblib', '_'))
- block.save(tmp_file_path)
- python_cmd_line = "python prediction/predict_noisy_image_svd_" + p_filter + ".py --image {0} --solution '{1}' --model {2} --mode {3} --feature {4}"
- python_cmd = python_cmd_line.format(tmp_file_path, p_solution, p_model_file, p_mode, p_feature)
- # specify use of custom file for min max normalization
- if p_custom:
- python_cmd = python_cmd + ' --custom ' + p_custom
- ## call command ##
- p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
- (output, err) = p.communicate()
- ## Wait for result ##
- p_status = p.wait()
- prediction = int(output)
- # save here in specific file of block all the predictions done
- block_predictions_str[id_block] = block_predictions_str[id_block] + ";" + str(prediction)
- print(str(id_block) + " : " + str(current_quality_image) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
- # end of scene => display of results
- # construct path using model name for saving threshold map folder
- model_threshold_path = os.path.join(threshold_map_folder, p_model_file.split('/')[-1].replace('.joblib', ''))
- # create threshold model path if necessary
- if not os.path.exists(model_threshold_path):
- os.makedirs(model_threshold_path)
- map_filename = os.path.join(model_threshold_path, simulation_curves_zones + scene_name)
- f_map = open(map_filename, 'w')
- for line in block_predictions_str:
- f_map.write(line + '\n')
- f_map.close()
- print("------------------------")
- print("Model predictions are saved into %s" % map_filename)
- if __name__== "__main__":
- main()
|