123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- import os, argparse
- import numpy as np
- import pandas as pd
- from sklearn.model_selection import train_test_split
- from sklearn.preprocessing import MinMaxScaler
- from sklearn.model_selection import GridSearchCV
- from sklearn.metrics import roc_auc_score, accuracy_score
- import sklearn.svm as svm
- from methods import features_selection_list, features_selection_method
- def train_model(X_train, y_train):
- print ('Creating model...')
- # here use of SVM with grid search CV
- Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
- gammas = [0.001, 0.01, 0.1,10, 100, 1000]
- param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
- svc = svm.SVC(probability=True, class_weight='balanced')
- clf = GridSearchCV(svc, param_grid, cv=2, verbose=1, n_jobs=-1)
- clf.fit(X_train, y_train)
- model = clf.best_estimator_
- return model
- def loadDataset(filename):
- ########################
- # 1. Get and prepare data
- ########################
- dataset = pd.read_csv(filename, sep=',')
- # change label as common
- min_label_value = min(dataset.iloc[:, -1])
- max_label_value = max(dataset.iloc[:, -1])
- dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
- dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
- X_dataset = dataset.iloc[:, :-1]
- y_dataset = dataset.iloc[:, -1]
- problem_size = len(X_dataset.columns)
- # min/max normalisation over feature
- # create a scaler object
- scaler = MinMaxScaler()
- # fit and transform the data
- X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
- # prepare train, validation and test datasets
- X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
- return X_train, y_train, X_test, y_test, problem_size
- def main():
- parser = argparse.ArgumentParser(description="Get features extraction from specific method")
- parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
- parser.add_argument('--method', type=str, help='method name to use', choices=features_selection_list, required=True)
- parser.add_argument('--params', type=str, help='params used for the current selected method', required=True)
- parser.add_argument('--ntrain', type=int, help='number of training in order to keep mean of score', default=1)
- parser.add_argument('--output', type=str, help='output features selection results')
- args = parser.parse_args()
- p_data_file = args.data
- p_method = args.method
- p_params = args.params
- p_ntrain = args.ntrain
- p_output = args.output
- # load data from file and get problem size
- X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
- # extract indices selected features
- features_indices = features_selection_method(p_method, p_params, X_train, y_train, problem_size)
- print(f'Selected features {len(features_indices)} over {problem_size}')
- auc_scores = []
- acc_scores = []
-
- for i in range(p_ntrain):
- # new split of dataset
- X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
- # get reduced dataset
- X_train_reduced = X_train[:, features_indices]
- X_test_reduced = X_test[:, features_indices]
- # get trained model over reduce dataset
- model = train_model(X_train_reduced, y_train)
- # get predicted labels over test dataset
- y_test_model = model.predict(X_test_reduced)
- y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
- test_roc_auc = roc_auc_score(y_test, y_test_predict)
- test_acc = accuracy_score(y_test, y_test_predict)
- print(f'Run n°{i}: {test_roc_auc} (AUC ROC)')
- # append score into list of run
- auc_scores.append(test_roc_auc)
- acc_scores.append(test_acc)
- mean_auc_score = sum(auc_scores) / len(auc_scores)
- mean_acc_score = sum(acc_scores) / len(acc_scores)
- var_acc_score = np.var(acc_scores)
- var_auc_score = np.var(auc_scores)
- std_acc_score = np.std(acc_scores)
- std_auc_score = np.std(auc_scores)
- print(f'Model performance using {p_method} (params: {p_params}) is of {mean_auc_score:.2f}')
- # now save trained model and params obtained
- header_line = 'dataset;method;params;ntrain;n_features;acc_test;auc_test;var_acc_test;var_auc_test;std_acc_test;std_auc_test;features_indices\n'
- data_line = f'{p_data_file};{p_method};{p_params};{p_ntrain};{len(features_indices)};{mean_acc_score};{mean_auc_score};{var_acc_score};{var_auc_score};{std_acc_score};{std_auc_score};{" ".join(list(map(str, features_indices)))}\n'
- output_folder, _ = os.path.split(p_output)
- if len(output_folder) > 0:
- if not os.path.exists(output_folder):
- os.makedirs(output_folder)
- if not os.path.exists(p_output):
- with open(p_output, 'w') as f:
- f.write(header_line)
- with open(p_output, 'a') as f:
- f.write(data_line)
-
- if __name__ == "__main__":
- main()
|