123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # main imports
- import os
- import sys
- import argparse
- import pandas as pd
- import numpy as np
- import logging
- import datetime
- # model imports
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.linear_model import LogisticRegression
- from sklearn.ensemble import RandomForestClassifier, VotingClassifier
- import joblib
- import sklearn.svm as svm
- from sklearn.utils import shuffle
- from sklearn.metrics import roc_auc_score
- from sklearn.model_selection import cross_val_score
- from sklearn.feature_selection import SelectFromModel
- from sklearn.ensemble import ExtraTreesClassifier
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- import models as mdl
- # variables and parameters
- models_list = cfg.models_names_list
- number_of_values = 30
- ils_iteration = 4000
- ls_iteration = 10
- # default validator
- def validator(solution):
- if list(solution.data).count(1) < 5:
- return False
- return True
- def loadDataset(filename):
- ########################
- # 1. Get and prepare data
- ########################
- dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
- #nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
- #nb_noisy_test = len(noisy_df_test.index)
- # use of all data
- final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- # use of the whole data set for training
- x_dataset_train = final_df_train.iloc[:,1:]
- x_dataset_test = final_df_test.iloc[:,1:]
- y_dataset_train = final_df_train.iloc[:,0]
- y_dataset_test = final_df_test.iloc[:,0]
- return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
- def main():
- parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
- parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, required=True)
- parser.add_argument('--selector', type=str, help='kind of model to use for selecting', choices=['svm', 'tree'], default='tree')
- parser.add_argument('--length', type=str, help='max data length (need to be specify for evaluator)', required=True)
- parser.add_argument('--output', type=str, help='output name expected for model results', required=True)
- args = parser.parse_args()
- p_data_file = args.data
- p_choice = args.choice
- p_selector = args.selector
- p_length = args.length
- p_output = args.output
- print(p_data_file)
- # load data from file
- x_train, y_train, x_test, y_test = loadDataset(p_data_file)
- for i in (np.arange(11) + 5):
- model_to_fit = None
- # use of svm here to fit well model
- if p_selector == 'tree':
- model_to_fit = ExtraTreesClassifier(n_estimators=100)
- elif p_selector == 'svm':
- Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
- gammas = [0.001, 0.01, 0.1, 5, 10, 100]
- param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
- svc = svm.SVC(probability=True, class_weight='balanced')
- #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
- model_to_fit = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring='roc_auc', n_jobs=-1)
- model = SelectFromModel(model_to_fit, max_features=i)
- selector = model.fit(x_train, y_train)
- binary_selection = [ 0 if x < selector.threshold_ else 1 for x in selector.estimator_.feature_importances_ ]
- X_train_new = selector.transform(x_train)
- X_test_new = selector.transform(x_test)
- print('Shape for {}, is now {}'.format(i, X_train_new.shape))
- svm_model = mdl.get_trained_model(p_choice, X_train_new, y_train)
- y_test_model = svm_model.predict(X_test_new)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
-
- if not os.path.exists(cfg.output_results_folder):
- os.makedirs(cfg.output_results_folder)
- # save model results into file
- with open(os.path.join(cfg.output_results_folder, p_output), 'a') as f:
- line = str(i) + ';'
- line += str(test_roc_auc) + ';'
-
- for index, b in enumerate(binary_selection):
- line += str(b)
- if index < len(binary_selection) - 1:
- line += ','
- f.write(line + '\n')
- # create `logs` folder if necessary
- if not os.path.exists(cfg.output_logs_folder):
- os.makedirs(cfg.output_logs_folder)
- logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
- # init solution (`n` attributes)
-
- if __name__ == "__main__":
- main()
|